Lower bounds for the number of small convex k-holes

Oswin Aichholzer1, Ruy Fabila-Monroy2, Thomas Hackl1, Clemens Huemer3, Alexander Pilz1, and Birgit Vogtenhuber1

1 Institute for Software Technology, Graz University of Technology
2 Departamento de Matemáticas, Cinvestav, Mexico City, Mexico
3 Departament de Matemàtica Aplicada IV, UPC, Barcelona, Spain
Definition

- sets S of n points in \mathbb{R}^2 in general position
- convex k-hole P:
 - P is a convex polygon spanned by exactly k points of S and no other point of S is contained in P

- $\partial \text{CH}(S)$... boundary of the convex hull $\text{CH}(S)$ of S
- $\log_2(x) = \frac{\log x}{\log 2}$... binary logarithm or logarithmus dualis
Introduction

- classical existence question by Erdős:
 - What is the smallest integer $h(k)$ such that any set of $h(k)$ points in \mathbb{R}^2 contains at least one convex k-hole?

- Answers:
 - $k = 4$: E. Klein: $h(4) = 5$
 - $k = 5$: H. Harborth: $h(5) = 10$
 - $k = 6$: T. Gerken and C. Nicolás: $h(6) =$ finite
 - $k = 7$: J. Horton: \exists arbitrary large sets without convex 7-holes
Introduction

• generalization of Erdős’ question:
 ○ What is the least number $h_k(n)$ of convex k-holes determined by any set of n points in \mathbb{R}^2?

• $h_k(n) = \min_{|S|=n} \{ h_k(S) \}$; we consider $3 \leq k \leq 5$
Introduction

- generalization of Erdős’ question:
 - What is the least number $h_k(n)$ of convex k-holes determined by any set of n points in \mathbb{R}^2?

- $h_k(n) = \min_{|S|=n} \{h_k(S)\}$; we consider $3 \leq k \leq 5$

- $h_5(n) \geq \frac{n}{2} - O(1)$ [Valtr]

- $h_3(n) \geq n^2 - \frac{37n}{8} + \frac{23}{8}$ [García]

- $h_4(n) \geq \frac{n^2}{2} - \frac{11n}{4} - \frac{9}{4}$ [García]
Introduction

- generalization of Erdős’ question:
 - What is the least number $h_k(n)$ of convex k-holes determined by any set of n points in \mathbb{R}^2?

 \[h_k(n) = \min \{ h_k(S) \} ; \quad \text{we consider } 3 \leq k \leq 5 \]

- $h_5(n) \geq \frac{n}{2} - O(1)$ [Valtr] $\rightarrow h_5(n) \geq \frac{3n}{4} - o(n)$

- $h_3(n) \geq n^2 - \frac{37n}{8} + \frac{23}{8}$ [García]

 $\rightarrow h_3(n) \geq n^2 - \frac{32n}{7} + \frac{22}{7}$

- $h_4(n) \geq \frac{n^2}{2} - \frac{11n}{4} - \frac{9}{4}$ [García]

 $\rightarrow h_4(n) \geq \frac{n^2}{2} - \frac{9n}{4} - o(n)$
Convex 5-holes

- Bárány and Valtr, 2004: $h_5(n) \leq 1.0207n^2 + o(n^2)$

- Valtr, 2012: $h_5(n) \geq \frac{n}{2} - O(1) \implies h_5(n) \geq \frac{3}{4}n - o(n)$

- for small n:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3.4</th>
<th>3.6</th>
<th>3.9</th>
<th>≥ 3</th>
<th>≥ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_5(n)$</td>
<td>≤ 9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

Harborth, 1978
Dehnhardt, 1987
Aichholzer, H., and Vogtenhuber, 2012
Convex 5-holes

- Bárány and Valtr, 2004: $h_5(n) \leq 1.0207n^2 + o(n^2)$

- Valtr, 2012: $h_5(n) \geq \frac{n}{2} - O(1) \Rightarrow h_5(n) \geq \frac{3}{4}n - o(n)$

- for small n:

<table>
<thead>
<tr>
<th>n</th>
<th>≤ 9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_5(n)$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3.4</td>
<td>3.6</td>
<td>3.9</td>
<td>≥ 3</td>
<td>≥ 3</td>
</tr>
</tbody>
</table>

Harborth, 1978

Dehnhardt, 1987

Aichholzer, H., and Vogtenhuber, 2012

$\geq 3 \quad \leq 3$
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

$h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$ convex 5-holes.
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \geq 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, $m = 0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

$h_5(n) \geq 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, $m = 0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

Case 1/2: $\exists p \in (S \cap \partial \text{CH}(S))$, p vertex of a convex 5-hole

$h_5(S) \geq 1 + h_5(S \setminus \{p\}) \geq 1 + h_5(n - 1)$
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$ convex 5-holes.

Base case, $m=0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

Case 2/2: $\forall p \in (S \cap \partial \text{CH}(S))$: p is not a vertex of a convex 5-hole
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

$$h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$$

convex 5-holes.

Base case, $m=0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

Case 2/2: $\forall p \in (S \cap \partial \text{CH}(S))$: p is not a vertex of a convex 5-hole

$(m-1)$ pairs

$$|S_0'| = 3 \quad 4 \quad \ldots \quad S_i \quad S_i' \quad \ldots \quad 3 \quad 4$$

$|S_0| = 7$

$|S_{\text{rem}}| = t+4$
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$ convex 5-holes.

Base case, $m=0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

Case 2/2: $\forall p \in (S \cap \partial \text{CH}(S))$: p is not a vertex of a convex 5-hole $n = 1 + 7 + 4 + 7(m-1) + t + 4$

$|S_0'| = 4$

$|S_0| = 7$

$\left|S_{\text{rem}}\right| = t + 4$

p
\(h_5(n)\): Improvement for small \(n\)

Let \(m \geq 0\) be a natural number and \(t \in \{1, 2, 3\}\):

Every set \(S\) of \(n = 7 \cdot m + 9 + t\) points in the plane in general position contains at least
\n\[
h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}\]

convex 5-holes.

Base case, \(m = 0\): \(h_5(10) = 1\), \(h_5(11) = 2\), and \(h_5(12) = 3\).

Case 2/2: \(\forall p \in (S \cap \partial \text{CH}(S))\): \(p\) is not a vertex of a convex 5-hole

\((m-1)\) pairs

\[
|S'_0| = 4 \quad |S_0| = 7 \quad |S_{\text{rem}}| = t+4
\]

\[
n = 1 + 7 + 4 + 7(m-1) + t + 4
\]

\[
h_5(S') = ? \geq 3
\]
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

$h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$ convex 5-holes.

Base case, $m=0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

Case 2/2: $\forall p \in (S \cap \partial \text{CH}(S))$: p is not a vertex of a convex 5-hole

$(m-1)$ pairs

$n = 1 + 7 + 4 + 7(m-1) + t + 4$

$h_5(S') = ?$

$\geq 3 + 3(m-1)$

$|S_0| = 7$

$|S'_0| = 4$

$|S_i| S'_i \ldots$

$|S_{\text{rem}}| = t + 4$

p
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

$$h_5(n) \geq \frac{3n-27+4t}{7}$$

convex 5-holes.

Base case, $m=0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

Case 2/2: $\forall p \in (S \cap \partial \text{CH}(S))$: p is not a vertex of a convex 5-hole

$$n = 1 + 7+4 + 7(m-1) + t+4$$

$$h_5(S) = ? \geq 3 + 3(m-1) + t$$
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

$$h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$$

convex 5-holes.

- $m = 1, t = 1$: $n = 7 \cdot 1 + 9 + 1 = 17$; ...

<table>
<thead>
<tr>
<th>n</th>
<th>17</th>
<th>18</th>
<th>19..23</th>
<th>24</th>
<th>25</th>
<th>26..30</th>
<th>31</th>
<th>32</th>
<th>33..37</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_5(n)$</td>
<td>≥ 4</td>
<td>≥ 5</td>
<td>≥ 6</td>
<td>≥ 7</td>
<td>≥ 8</td>
<td>≥ 9</td>
<td>≥ 10</td>
<td>≥ 11</td>
<td>≥ 12</td>
<td>≥ 13</td>
</tr>
</tbody>
</table>
$h_5(n)$: Improvement for large n
$h_5(n)$: Improvement for large n

$|S_L| = \lceil \frac{n}{2} \rceil$ and $|S_R| = \lfloor \frac{n}{2} \rfloor$

c... # convex 5-holes intersected by ℓ:

$h_5(S) = h_5(S_L) + h_5(S_R) + c$
$h_5(n)$: Improvement for large n

\[|S_L| = \left\lceil \frac{n}{2} \right\rceil \quad \text{and} \quad |S_R| = \left\lfloor \frac{n}{2} \right\rfloor \]

$c \ldots \# \text{ convex 5-holes intersected by } \ell:\]

\[h_5(S) = h_5(S_L) + h_5(S_R) + c \]

\[|S'| = 12, \quad |S' \cap S_L| = 8, \quad |S' \cap S_R| = 4 \]
$h_5(n)$: Improvement for large n

$|S_L| = \left\lceil \frac{n}{2} \right\rceil$ and $|S_R| = \left\lfloor \frac{n}{2} \right\rfloor$

c... # convex 5-holes intersected by ℓ:

$h_5(S) = h_5(S_L) + h_5(S_R) + c$

$|S'| = 12, |S' \cap S_L| = 8, |S' \cap S_R| = 4$

$\ell'' \parallel \ell', |S'' \cap S_L| = 4$
$h_5(n)$: Improvement for large n

$|S_L| = \lceil \frac{n}{2} \rceil$ and $|S_R| = \lfloor \frac{n}{2} \rfloor$

c\ldots \# convex 5-holes intersected by ℓ:

$h_5(S) = h_5(S_L) + h_5(S_R) + c$

$|S'| = 12$, $|S' \cap S_L| = 8$, $|S' \cap S_R| = 4$

$\ell'' \parallel \ell'$, $|S'' \cap S_L| = 4$

at least 3 convex 5-holes in S'

- either, at least one intersects $\ell \rightarrow c_L$
- or, all convex 5-holes are completely in $S' \cap S_L$
$h_5(n)$: Improvement for large n

$|S_L| = \left\lceil \frac{n}{2} \right\rceil$ and $|S_R| = \left\lfloor \frac{n}{2} \right\rfloor$

\ldots # convex 5-holes intersected by ℓ:

$$h_5(S) = h_5(S_L) + h_5(S_R) + c$$

$|S'| = 12$, $|S' \cap S_L| = 8$, $|S' \cap S_R| = 4$

$\ell'' \parallel \ell'$, $|S'' \cap S_L| = 4$

at least 3 convex 5-holes in S'

- either, at least one intersects $\ell \to c_L$
- or, all convex 5-holes are completely in $S' \cap S_L$

$$h_5(S) \geq 3 \cdot \left(\left\lceil \frac{1}{4} \cdot (\left\lfloor \frac{n}{2} \right\rfloor - 8c_L) \right\rceil - 1 \right)$$
$h_5(n)$: Improvement for large n

\[|S_L| = \lceil \frac{n}{2} \rceil \text{ and } |S_R| = \lfloor \frac{n}{2} \rfloor \]

c\ldots \# \text{ convex 5-holes intersected by } \ell:\]

\[h_5(S) = h_5(S_L) + h_5(S_R) + c \]

\[|S'| = 12, |S' \cap S_L| = 8, |S' \cap S_R| = 4 \]

\[\ell'' \parallel \ell', |S'' \cap S_L| = 4 \]

at least 3 convex 5-holes in S'

\[\bullet \text{ either, at least one intersects } \ell \rightarrow c_L \]

\[\bullet \text{ or, all convex 5-holes are completely in } S' \cap S_L \]

\[h_5(S) \geq 3 \cdot \left(\lceil \frac{1}{4} \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor - 8c_L \right) \right) - 1 \]

\[+ 3 \cdot \left(\lceil \frac{1}{4} \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor - 8c_R \right) \right) - 1 \]
$h_5(n)$: Improvement for large n

$|S_L| = \lceil \frac{n}{2} \rceil$ and $|S_R| = \lfloor \frac{n}{2} \rfloor$

- $\#$ convex 5-holes intersected by ℓ:

 $h_5(S') = h_5(S_L) + h_5(S_R) + c$

 $|S'| = 12$, $|S' \cap S_L| = 8$, $|S' \cap S_R| = 4$

 $\ell'' \parallel \ell'$, $|S'' \cap S_L| = 4$

 - at least 3 convex 5-holes in S'
 - either, at least one intersects $\ell \rightarrow c_L$
 - or, all convex 5-holes are completely in $S' \cap S_L$

 $h_5(S') \geq 3 \cdot (\lceil \frac{1}{4} \cdot (\lceil \frac{n}{2} \rceil - 8c_L) \rceil - 1)$

 $\quad + 3 \cdot (\lceil \frac{1}{4} \cdot (\lfloor \frac{n}{2} \rfloor - 8c_R) \rceil - 1) + \frac{c_L + c_R}{2}$
\(h_5(n) \): Improvement for large \(n \)

\[|S_L| = \left\lceil \frac{n}{2} \right\rceil \text{ and } |S_R| = \left\lfloor \frac{n}{2} \right\rfloor \]

\(c \) \# convex 5-holes intersected by \(\ell \):

\[h_5(S) = h_5(S_L) + h_5(S_R) + c \]

\[|S'| = 12, |S' \cap S_L| = 8, |S' \cap S_R| = 4 \]

\(\ell'' \parallel \ell', |S'' \cap S_L| = 4 \)

at least 3 convex 5-holes in \(S' \)

- either, at least one intersects \(\ell \rightarrow c_L \)
- or, all convex 5-holes are completely in \(S' \cap S_L \)

\[h_5(S) \geq 3 \cdot \left(\left\lceil \frac{1}{4} \cdot \left(\left\lceil \frac{n}{2} \right\rceil - 8c_L \right) \right\rceil - 1 \right) + 3 \cdot \left(\left\lceil \frac{1}{4} \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor - 8c_R \right) \right\rceil - 1 \) + \frac{c_L+c_R}{2} \]

\[h_5(S) \geq \frac{3n}{4} - 11 \cdot \frac{c_L+c_R}{2} - \frac{21}{2} \]
$h_5(n)$: Improvement for large n

$|S_L| = \left\lceil \frac{n}{2} \right\rceil$ and $|S_R| = \left\lfloor \frac{n}{2} \right\rfloor$

c . . . # convex 5-holes intersected by ℓ:

$h_5(S') = h_5(S_L) + h_5(S_R) + c$

$|S'| = 12$, $|S' \cap S_L| = 8$, $|S' \cap S_R| = 4$

$\ell'' \parallel \ell'$, $|S'' \cap S_L| = 4$

at least 3 convex 5-holes in S'

- either, at least one intersects $\ell \rightarrow c_L$
- or, all convex 5-holes are completely in $S' \cap S_L$

$h_5(S) \geq 3 \cdot \left(\left\lfloor \frac{1}{4} \right\rfloor \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor - 8c_L \right) \right) - 1$)

$+ 3 \cdot \left(\left\lfloor \frac{1}{4} \right\rfloor \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor - 8c_R \right) \right) - 1) + \frac{c_L + c_R}{2}$

$h_5(S) \geq \frac{3n}{4} - 11 \cdot \frac{c_L + c_R}{2} - \frac{21}{2}$

$h_5(S') \geq 2 \cdot h_5(\left\lceil \frac{n-1}{2} \right\rceil) + \frac{c_L + c_R}{2}$
$h_5(n)$: Improvement for large n

$$h_5(S) \geq \max \left\{ \left(\frac{3n}{4} - 11 \cdot \frac{c_L + c_R}{2} - \frac{21}{2} \right), \right.$$
$$\left(2 \cdot h_5 \left(\left\lceil \frac{n-1}{2} \right\rceil \right) + \frac{c_L + c_R}{2} \right) \right\}$$
\(h_5(n) \): Improvement for large \(n \)

\[
h_5(S) \geq \max \left\{ \left(\frac{3n}{4} - 11 \cdot \frac{c_L + c_R}{2} - \frac{21}{2} \right), \left(2 \cdot h_5 \left(\left\lceil \frac{n-1}{2} \right\rceil \right) + \frac{c_L + c_R}{2} \right) \right\}
\]

\[
\frac{c_L + c_R}{2} = \frac{n}{16} - \frac{7}{8} - \frac{1}{6} \cdot h_5 \left(\left\lceil \frac{n-1}{2} \right\rceil \right)
\]

\[
\Rightarrow h_5(n) \geq \frac{n}{16} - \frac{7}{8} + \frac{11}{6} \cdot h_5 \left(\left\lceil \frac{n-1}{2} \right\rceil \right)
\]
$h_5(n)$: Improvement for large n

\[
h_5(S) \geq \max \left\{ \left(\frac{3n}{4} - 11 \cdot \frac{c_L + c_R}{2} - \frac{21}{2} \right), \left(2 \cdot h_5 \left(\left\lceil \frac{n-1}{2} \right\rceil \right) + \frac{c_L + c_R}{2} \right) \right\}
\]

\[
\frac{c_L + c_R}{2} = \frac{n}{16} - \frac{7}{8} - \frac{1}{6} \cdot h_5 \left(\left\lceil \frac{n-1}{2} \right\rceil \right)
\]

\[
\Rightarrow h_5(n) \geq \frac{n}{16} - \frac{7}{8} + \frac{11}{6} \cdot h_5 \left(\left\lceil \frac{n-1}{2} \right\rceil \right)
\]

\[
h_5(n) \geq \frac{3n}{4} - n \cdot \text{ld} \frac{11}{6} + \frac{15}{8} = \frac{3n}{4} - o(n)
\]
\[h_5(n) : \text{Improvement for large } n \]

Every set \(S \) of \(n \geq 12 \) points in the plane in general position contains at least

\[
h_5(n) \geq \frac{3n}{4} - n^{\text{ld}} \frac{11}{6} + \frac{15}{8} = \frac{3n}{4} - o(n)
\]

convex 5-holes.
Empty triangles and convex 4-holes

- Bárány and Valtr, 2004: \(h_3(n) \leq 1.6196n^2 + o(n^2) \)
 \(h_4(n) \leq 1.9396n^2 + o(n^2) \)

- García, 2012: \(h_3(S) = n^2 - 5n + H + 4 + h_{3\mid 5}(S) \)
 \(h_4(S) = \frac{n^2}{2} - \frac{7n}{2} + H + 3 + h_{4\mid 5}(S) \)

\(H = |S \cap \partial \text{CH}(S)| \)
\(h_{3\mid 5}(S) \ldots \# \text{ of empty triangles generated by convex 5-holes} \)
\(h_{4\mid 5}(S) \ldots \# \text{ of convex 4-holes generated by convex 5-holes} \)
\(\triangle / \lozenge \text{ generated by } \lozenge \)

- Set \(S \) of \(n \) points in general position in the plane
- and an arbitrary but fixed sort order on \(S \) (e.g.: along a line, around an extremal point)
Multiple generation

Let \(\triangle (\diamond) \) be an empty triangle (a convex 4-hole) of \(S \).

If \(\triangle (\diamond) \) is generated by at least two different convex 5-holes of \(S \), then there exists at least one convex 6-hole of \(S \), containing \(\triangle (\diamond) \).
$h_{3|5}(S\odot)$ and $h_{4|5}(S\odot)$

Let \odot be a convex 6-hole of S, and $S\odot = S \cap \odot$.

$h_{3|5}(S\odot) = 4$ and $h_{4|5}(S\odot) = 9$

Recall: $h_{5}(10) = 1$, $h_{5}(11) = 2$, and $h_{5}(12) = 3$

$h_{3|5}(10) = 1$, $h_{3|5}(11) = 2$, and $h_{3|5}(12) = 3$

$h_{4|5}(10) = 2$, $h_{4|5}(11) = 4$, and $h_{4|5}(12) = 6$
$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Recall: if $m \geq 0$ is a natural number and $t \in \{1, 2, 3\}$, then:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$ convex 5-holes.

Case 1/2:

Case 2/2:

\[
\begin{align*}
|S_0'| &= 3 \\
|S_i| &= 4 \\
|S_i'| &= 3 \\
|S_{rem}| &= t + 4
\end{align*}
\]
If $m \geq 0$ is a natural number and $t \in \{1, 2, 3\}$, then:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position:

$$h_3|_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$$

$$h_4|_5(n) \geq 2 \cdot (3m + t) = 2 \cdot \frac{3n-27+4t}{7}$$
$h_3(n)$ improvement

If $m \geq 0$ is a natural number and $t \in \{1, 2, 3\}$, then:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position:

\[
h_3|_5(n) \geq 3m + t = \frac{3n-27+4t}{7}
\]

\[
h_4|_5(n) \geq 2 \cdot (3m + t) = 2 \cdot \frac{3n-27+4t}{7}
\]

Every set S of $n \geq 12$ points (H extremal) in the plane in general position:

\[
h_3(S) \geq n^2 - 5n + H + 4 + \left\lceil \frac{3n-27}{7} \right\rceil
\]

\[
h_3(n) \geq n^2 - \frac{32n}{7} + \frac{22}{7}
\]
Recall $h_5(n)$ for large n

- if one convex 5-hole intersects ℓ, then at least one “generated” convex 4-hole intersects ℓ
- if all convex 5-holes are completely in $S' \cap S_L$, then all “generated” convex 4-holes are completely in $S' \cap S_L$
Recall $h_5(n)$ for large n

- if one convex 5-hole intersects ℓ, then at least one “generated” convex 4-hole intersects ℓ,

- if all convex 5-holes are completely in $S' \cap S_L$, then all “generated” convex 4-holes are completely in $S' \cap S_L$,

! in the latter case count only 5 ”generated” convex 4-holes for S''

$\left| S_L \right| = \left\lceil \frac{n}{2} \right\rceil$ and $\left| S_R \right| = \left\lfloor \frac{n}{2} \right\rfloor$

$\left| S' \right| = 12$, $\left| S' \cap S_L \right| = 8$, $\left| S' \cap S_R \right| = 4$

$\ell'' \parallel \ell'$, $\left| S'' \cap S_L \right| = 4$

$h_5(S') \geq 3 \rightarrow h_{4|5}(S') \geq 6$
Every set S of $n \geq 12$ points (H extremal) in the plane in general position:

$$h_4(S) \geq \frac{n^2}{2} - \frac{9n}{4} - \frac{383}{303} \cdot n^{1.10} + H + \frac{127}{24}$$

$$h_4(n) \geq \frac{n^2}{2} - \frac{9n}{4} - 1.2641 \cdot n^{0.926} + \frac{199}{24}$$

$$= \frac{n^2}{2} - \frac{9n}{4} - o(n)$$
Conclusion

- Convex 5-holes
 - $h_5(n) \geq \frac{3n}{4} - o(n)$

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13..16</th>
<th>17</th>
<th>18</th>
<th>19..23</th>
<th>24</th>
<th>25</th>
<th>26..30</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_5(n)$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>≥ 3</td>
<td>≥ 4</td>
<td>≥ 5</td>
<td>≥ 6</td>
<td>≥ 7</td>
<td>≥ 8</td>
<td>≥ 9</td>
</tr>
</tbody>
</table>
Conclusion

- Convex 5-holes
 - n
10	11	12	13..16	17	18	19..23	24	25	26..30
$h_5(n)$									
1	2	3	≥ 3	≥ 4	≥ 5	≥ 6	≥ 7	≥ 8	≥ 9
 - $h_5(n) \geq \frac{3n}{4} - o(n)$

- empty triangles and convex 4-holes
 - $h_3(n) \geq n^2 - \frac{32n}{7} + \frac{22}{7}$
 - $h_4(n) \geq \frac{n^2}{2} - \frac{9n}{4} - o(n)$
Conclusion

- **Convex 5-holes**
 - \(h_5(n) \geq \frac{3n}{4} - o(n) \)
 - \(n \) \hspace{1cm} 10 \hspace{1cm} 11 \hspace{1cm} 12 \hspace{1cm} 13..16 \hspace{1cm} 17 \hspace{1cm} 18 \hspace{1cm} 19..23 \hspace{1cm} 24 \hspace{1cm} 25 \hspace{1cm} 26..30
 - \(h_5(n) \) \hspace{1cm} 1 \hspace{1cm} 2 \hspace{1cm} 3 \hspace{1cm} \geq 3 \hspace{1cm} \geq 4 \hspace{1cm} \geq 5 \hspace{1cm} \geq 6 \hspace{1cm} \geq 7 \hspace{1cm} \geq 8 \hspace{1cm} \geq 9 \)

- **empty triangles and convex 4-holes**
 - \(h_3(n) \geq n^2 - \frac{32n}{7} + \frac{22}{7} \)
 - \(h_4(n) \geq \frac{n^2}{2} - \frac{9n}{4} - o(n) \)

- **Open questions / future work**
 - \(h_5(n) \): super-linear, maybe even quadratic lower bound
 - \(\exists c > 1, h_3(n) \geq c \cdot n^2 - o(n^2) \)
Thank you for your attention!
Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

\[h_5(n) \geq 3m + t = \frac{3n-27+4t}{7} \]

convex 5-holes.
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

$$h_5(n) \geq 3m + t = \frac{3n - 27 + 4t}{7}$$

convex 5-holes.

Base case, $m = 0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

$$h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$$

convex 5-holes.

Base case, $m=0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

Case 1/2: $\exists p \in (S \cap \partial \text{CH}(S))$, p vertex of a convex 5-hole

$$h_5(S) \geq 1 + h_5(S \setminus \{p\}) \geq 1 + h_5(n-1)$$
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

\[h_5(n) \geq 3m + t = \frac{3n-27+4t}{7} \]

convex 5-holes.

Base case, $m=0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

Case 1/2: $\exists p \in (S \cap \partial \text{CH}(S))$, p vertex of a convex 5-hole

\[h_5(S) \geq 1 + h_5(S \setminus \{p\}) \geq 1 + h_5(n-1) \]

\[n-1 = 7m + 9 + t - 1 \]

for $t = \{2, 3\}$ \rightarrow $t - 1 = \{1, 2\}$

\[\text{induction} \rightarrow 1 + h_5(n-1) \geq 1 + 3m + t - 1 \]
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

$h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$ convex 5-holes.

Base case, $m=0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

Case 1/2: $\exists p \in (S \cap \partial \text{CH}(S))$, p vertex of a convex 5-hole

$h_5(S) \geq 1 + h_5(S \setminus \{p\}) \geq 1 + h_5(n-1)$

$n-1 = 7m + 9 + t - 1$

for $t = 1 \rightarrow t-1 = 0$!
\[h_5(n) : \text{Improvement for small } n \]

Let \(m \geq 0 \) be a natural number and \(t \in \{1, 2, 3\} \):

Every set \(S \) of \(n = 7 \cdot m + 9 + t \) points in the plane in general position contains at least \(h_5(n) \geq 3m + t = \frac{3n-27+4t}{7} \) convex 5-holes.

Base case, \(m=0 \): \(h_5(10) = 1, h_5(11) = 2, \) and \(h_5(12) = 3 \).

Case 1/2: \(\exists p \in (S \cap \partial \text{CH}(S)), p \text{ vertex of a convex 5-hole} \)

\[h_5(S) \geq 1 + h_5(S \setminus \{p\}) \geq 1 + h_5(n-1) \]

\(t=1: n-1 = 7m + 9 + t - 1 = 7m + 9 = 7(m-1) + 9 + 7 \)
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

$h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}$ convex 5-holes.

Base case, $m=0$: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

Case 1/2: $\exists p \in (S \cap \partial \text{CH}(S))$, p vertex of a convex 5-hole

$h_5(S) \geq 1 + h_5(S \setminus \{p\}) \geq 1 + h_5(n-1) \geq 1 + h_5(n-5)$

$t=1$: $n-1 = 7m + 9 + t-1 = 7m + 9 = 7(m-1) + 9 + 7$
\(h_5(n) \): Improvement for small \(n \)

Let \(m \geq 0 \) be a natural number and \(t \in \{1, 2, 3\} \):

Every set \(S \) of \(n = 7 \cdot m + 9 + t \) points in the plane in general position contains at least
\[
h_5(n) \geq 3m + t = \frac{3n-27+4t}{7} \]
convex 5-holes.

Base case, \(m=0 \): \(h_5(10) = 1 \), \(h_5(11) = 2 \), and \(h_5(12) = 3 \).

Case 1/2: \(\exists p \in (S \cap \partial \text{CH}(S)) \), \(p \) vertex of a convex 5-hole
\[
h_5(S) \geq 1 + h_5(S \setminus \{p\}) \geq 1 + h_5(n-1) \geq 1 + h_5(n-5)
\]

\[t=1: \quad n-1 = 7m + 9 + t - 1 = 7m + 9 = 7(m-1) + 9 + 7 \]
\[n-5 = 7(m-1) + 9 + 3 \]
\(h_5(n) \): Improvement for small \(n \)

Let \(m \geq 0 \) be a natural number and \(t \in \{1, 2, 3\} \):

Every set \(S \) of \(n = 7 \cdot m + 9 + t \) points in the plane in general position contains at least

\[h_5(n) \geq 3m + t = \frac{3n-27+4t}{7} \]

convex 5-holes.

Base case, \(m=0 \): \(h_5(10) = 1 \), \(h_5(11) = 2 \), and \(h_5(12) = 3 \).

Case 1/2: \(\exists p \in (S \cap \partial \text{CH}(S)) \), \(p \) vertex of a convex 5-hole

\[h_5(S) \geq 1 + h_5(S \setminus \{p\}) \geq 1 + h_5(n-1) \geq 1 + h_5(n-5) \]

\(t=1 \):
\[
\begin{align*}
n-1 &= 7m + 9 + t-1 = 7m + 9 = 7(m-1) + 9 + 7 \\
n-5 &= 7(m-1) + 9 + 3
\end{align*}
\]

\(\text{induction} \)
\[
\overset{\text{induction}}{1 + h_5(n-5)} \geq 1 + 3(m-1) + 3 = 3m + 1
\]
$h_5(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least

\[
h_5(n) \geq 3m + t = \frac{3n-27+4t}{7}
\]

convex 5-holes.

Corollary for $n = 7 \cdot 1 + 9 + 1 = 17$ points:

Every set S of $n = 17$ points in the plane in general position contains at least $h_5(n) \geq 4$ convex 5-holes.
Multiple generation

Let \triangle (\blacklozenge) be an empty triangle (a convex 4-hole) of S.

If \triangle (\blacklozenge) is generated by at least two different convex 5-holes of S, then there exists at least one convex 6-hole of S, containing \triangle (\blacklozenge).
Multiple generation

Let \triangle (◊) be an empty triangle (a convex 4-hole) of S.

If \triangle (◊) is generated by at least two different convex 5-holes of S, then there exists at least one convex 6-hole of S, containing \triangle (◊).
Multiple generation

Let $\triangle (\diamondsuit)$ be an empty triangle (a convex 4-hole) of S.

If $\triangle (\diamondsuit)$ is generated by at least two different convex 5-holes of S, then there exists at least one convex 6-hole of S, containing $\triangle (\diamondsuit)$.
Multiple generation

Let \(\triangle (\Diamond) \) be an empty triangle (a convex 4-hole) of \(S \).

If \(\triangle (\Diamond) \) is generated by at least two different convex 5-holes of \(S \), then there exists at least one convex 6-hole of \(S \), containing \(\triangle (\Diamond) \).
Multiple generation

Let \triangle (\diamondsuit) be an empty triangle (a convex 4-hole) of S.

If \triangle (\diamondsuit) is generated by at least two different convex 5-holes of S, then there exists at least one convex 6-hole of S, containing \triangle (\diamondsuit).
\[h_{3|5}(S_{\odot}) \text{ and } h_{4|5}(S_{\odot}) \]

Let \(\odot \) be a convex 6-hole of \(S \), and \(S_{\odot} = S \cap \odot \).

\[h_{3|5}(S_{\odot}) = 4 \text{ and } h_{4|5}(S_{\odot}) = 9 \]
Let \odot be a convex 6-hole of S, and $S_\odot = S \cap \odot$.

\[
h_3|_5(S_\odot) = 4 \quad \text{and} \quad h_4|_5(S_\odot) = 9
\]

$n = 6$ and $H = 6$:

\[
h_3(S_\odot) = n^2 - 5n + H + 4 + h_3|_5(S_\odot) = 16 + h_3|_5(S_\odot) \quad \text{and}
\]

\[
h_4(S_\odot) = \frac{n^2}{2} - \frac{7n}{2} + H + 3 + h_4|_5(S_\odot) = 6 + h_4|_5(S_\odot)
\]
Let \Diamond be a convex 6-hole of S, and $S_\Diamond = S \cap \Diamond$.

\[h_{3|5}(S_\Diamond) = 4 \quad \text{and} \quad h_{4|5}(S_\Diamond) = 9 \]

\[n = 6 \quad \text{and} \quad H = 6: \]

\[h_3(S_\Diamond) = n^2 - 5n + H + 4 + h_{3|5}(S_\Diamond) = 16 + h_{3|5}(S_\Diamond) \quad \text{and} \]

\[h_4(S_\Diamond) = \frac{n^2}{2} - \frac{7n}{2} + H + 3 + h_{4|5}(S_\Diamond) = 6 + h_{4|5}(S_\Diamond) \]

For S in convex position: $h_k(S) = \binom{n}{k}$, thus

\[h_{3|5}(S_\Diamond) = \binom{6}{3} - 16 = 4 \quad \text{and} \quad h_{4|5}(S_\Diamond) = \binom{6}{4} - 6 = 9 \]
$h_{3\mid 5}(S_{\bigcirc})$ and $h_{4\mid 5}(S_{\bigcirc})$

Let \bigcirc be a convex 6-hole of S, and $S_{\bigcirc} = S \cap \bigcirc$.

$h_{3\mid 5}(S_{\bigcirc}) = 4$ and $h_{4\mid 5}(S_{\bigcirc}) = 9$

Recall: $h_{5}(10) = 1$, $h_{5}(11) = 2$, and $h_{5}(12) = 3$

$h_{3\mid 5}(10) = 1$, $h_{3\mid 5}(11) = 2$, and $h_{3\mid 5}(12) = 3$

$h_{4\mid 5}(10) = 2$, $h_{4\mid 5}(11) = 4$, and $h_{4\mid 5}(12) = 6$
$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Case 1/2:

$p \equiv$ top vertex
$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Case 1/2:

$p \equiv$ top vertex
$h_{3\mid 5}(n)$ and $h_{4\mid 5}(n)$ for small n

Case 1/2:

$p \equiv \text{top vertex}$
$h_{3\mid 5}(n)$ and $h_{4\mid 5}(n)$ for small n

Case 1/2:

$p \equiv \text{top vertex}$
$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Case 2/2:
$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Case 2/2: