The BEAMER class

Manual for version 3.06.

\begin{frame}
\frametitle{There Is No Largest Prime Number}
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
\begin{theorem}
There is no largest prime number.
\end{theorem}
\begin{proof}
\begin{enumerate}
\item<1-| alert@1> Suppose p were the largest prime number.
\item<2-> Let q be the product of the first p numbers.
\item<3-> Then $q+1$ is not divisible by any of them.
\item<1-> Thus $q+1$ is also prime and greater than p.\qedhere
\end{enumerate}
\end{proof}
\end{frame}

Reslts
.

There Is No Largest Prime Number There Is No Largest Prime Number

The proof uses reductio ad absurdum. The proof uses reductio ad absurdum.

Theorem
There is no largest prime number. There is no largest prime number.

Proof.

@ Suppose p were the largest prime number.

@ Suppose p were the largest prime number.

@ Thus g +1 is also prime and greater than p. O @ Thus q +1 is also prime and greater than p. o

User’s Guide to the Beamer Class, Version 3.06

http://latex-beamer.sourceforge.net

Till Tantau
tantau@users.sourceforge.net

October 23, 2005

Contents

1 Introduction
1.1 Main Features e e e e e e e e e e e e e e e
1.2 History o e e e e e
1.3 Acknowledgments
1.4 How to Read this User’s Guide

Getting Started

Installation
2.1 Versions and Dependencies L L L
2.2 Installation of Prebundled Packages
2.2.1 Debian. e e
2.2.2 MiIKTeX e
2.3 Imstallation in a texmf Tree L
2.4 Updating the Installation
2.5 Testing the Installation
2.6 Compatibility with Other Packages and Classes
2.7 License: The GNU Public License, Version 2
2.7.1 Preamble
2.7.2 Terms and Conditions For Copying, Distribution and Modification
2.7.3 No Warranty e e
Tutorial: Euclid’s Presentation
3.1 Problem Statement L
3.2 Solution Template e
3.3 Title Material e e
3.4 The Title Page Frame
3.5 Creating the Presentation PDF File
3.6 The Table of Contents
3.7 Sections and Subsections
3.8 Creating a Simple Frame
3.9 Creating Simple Overlays o e
3.10 Using Overlay Specifications
3.11 Structuring a Frame oL
3.12 Adding References
3.13 Verbatim Text o
3.14 Changing the Way Things Look I: Theming
3.15 Changing the Way Things Look II: Colors and Fonts

http://latex-beamer.sourceforge.net
mailto:tantau@users.sourceforge.net

4 Workflow For Creating a Beamer Presentation
4.1 Step One: Setup the Files
4.2 Step Two: Structure Your Presentation,
4.3 Step Three: Creating a PDF or PostScript File
4.3.1 Creating PDF 0 . e
4.3.2 Creating PostScript Lo
4.3.3 Ways of Improving Compilation Speed L.
4.4 Step Four: Create Frames
4.5 Step Five: Test Your Presentation
4.6 Step Six: Create a Handout e
4.6.1 Creating the Handout
4.6.2 Printing the Handout L
Guidelines for Creating Presentations
5.1 Structuring a Presentation L Lo
5.1.1 Know the Time Constraints e
5.1.2 Global Structure
5.1.3 Frame Structure e e e
5.1.4 Imteractive Elements
5.2 Using Graphics e
5.3 Using Animations and Transitions L o
5.4 Choosing Appropriate Themes
5.5 Choosing Appropriate Colors
5.6 Choosing Appropriate Fonts and Font Attributes
5.6.1 Font Size
5.6.2 Font Families oL
5.6.3 Font Shapes: Italics and Small Capitals
5.6.4 Font Weight L

6 Solution Templates

II Building a Presentation
7 Creating Frames

7.1 The Frame Environment L

7.2 Components of a Frame L
7.2.1 The Headline and Footline
7.2.2 The Sidebars L
7.2.3 Navigation Bars L
7.2.4 The Navigation Symbols L
7.2.5 TheLogo e
7.2.6 The Frame Title
7.2.7 The Background e

7.3 Margin Sizes e e e

7.4 Restricting the Slides of a Frame

Creating Overlays

8.1 The Pause Commands e

8.2 The General Concept of Overlay Specifications

8.3 Commands with Overlay Specifications 0.

8.4 Environments with Overlay Specifications o L.

8.5 Dynamically Changing Text or Images

8.6 Advanced Overlay Specifications
8.6.1 Making Commands and Environments Overlay-Specification-Aware
8.6.2 Mode Specifications
8.6.3 Action Specifications
8.6.4 Incremental Specifications oL L

28
28
28
29
29
29
30
30
30
30
30
31

32
32
32
32
34
35
36
37
37
37
38
38
39
40
41

42

43

44
44
49
49
52
53
56
o8
o8
60
61
61

9 Structuring a Presentation: The Static Global Structure

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Adding a Title Page e e
Adding Sections and Subsections
Adding Partso e
Splitting a Course Into Lectures
Adding a Table of Contents
Adding a Bibliography
Adding an Appendix

10 Structuring a Presentation: The Interactive GGlobal Structure

10.1
10.2
10.3

Adding Hyperlinks and Buttons
Repeating a Frame at a Later Point
Adding Anticipated Zooming

11 Structuring a Presentation: The Local Structure

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Itemizations, Enumerations, and Descriptions
Hilighting« e
Block Environments e e e e
Theorem Environments e
Framed and Boxed Text e
Figures and Tables oL
Splitting a Frame into Multiple Columns
Positioning Text and Graphics Absolutely oo
Verbatim and Fragile Text oo

T1.I0ADstract o o o e
11.11Verse, Quotations, Quotes L
11.12Footnotes e e e e

12 Graphics

12.1
12.2
12.3
12.4
12.5

Including External Graphic Files Versus Inlines Graphics
Including Graphic Files Ending .epsor .ps
Including Graphic Files Ending .pdf, .jpg, .jpegor .png
Including Graphic Files Ending .mps o

Including Graphic Files Ending .mmp

13 Animations, Sounds, and Slide Transitions

13.1

13.2
13.3

Animations
13.1.1 Including External Animation Files.
13.1.2 Animations Created by Showing Slides in Rapid Succession
13.1.3 Including External Animations Residing in Multiple Image Files
Sounds e
Slide Transitions o . L e

IIT Changing the Way Things Look

14 Themes

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Five Flavors of Themes e e
Presentation Themes without Navigation Bars
Presentation Themes with a Tree-Like Navigation Bar
Presentation Themes with a Table of Contents Sidebar
Presentation Themes with a Mini Frame Navigation
Presentation Themes with Section and Subsection Tables
Presentation Themes Included For Compatibility

76
76
78
80
81
82
84
86

87
87
90
91

93
93
98
99
101
105
107
108
109
109
110
110
111

113
113
114
114
114
114

115
115
115
117
119
120
122

15 Inner Themes, Outer Themes, and Templates
15.1 Inner Themes
15.2 Outer Themes

15.3 Changing the Templates Used for Different Elements of a Presentation
15.3.1 Overview of Beamer’s Template Management

15.3.2 Using Beamer’s Templates
15.3.3 Setting Beamer’s Templates

16 Colors
16.1 Color Themes
16.1.1 Default and Special-Purpose Color Themes
16.1.2 Complete Color Themes
16.1.3 Inner Color Themes
16.1.4 Outer Color Themes

16.2 Changing the Colors Used for Different Elements of a Presentation

16.2.1 Overview of Beamer’s Color Management
16.2.2 Using Beamer’s Colors
16.2.3 Setting Beamer’s Colors
16.3 The Color of Mathematical Text
16.4 The Color Palettes
16.5 Miscellaneous Colors
16.6 Transparency Effects

17 Fonts
17.1 Font Themes
17.2 Font Changes Made Without Using Font Themes
17.2.1 Choosing a Font Size for Normal Text . .
17.2.2 Choosing a Font Family
17.2.3 Choosing a Font Encodings

17.3 Changing the Fonts Used for Different Elements of a Presentation

17.3.1 Overview of Beamer’s Font Management .
17.3.2 Using Beamer’s Fonts
17.3.3 Setting Beamer’s Fonts

IV Creating Supporting Material

18 Adding Notes for Yourself
18.1 Specifying Note Contents
18.2 Specifying Contents for Multiple Notes
18.3 Specifying Which Notes and Frames Are Shown .

19 Creating Transparancies

20 Creating Handouts and Lecture Notes
20.1 Creating Handouts Using the Handout Mode . .
20.2 Creating Handouts Using the Article Mode . . .
20.2.1 Starting the Article Mode
20.2.2 Workflow

20.2.3 Including Slides from the Presentation Version in the Article Version

20.3 Detailson Modes

21 Taking Advantage of Multiple Screens
21.1 Showing Notes on the Second Screen

21.2 Showing Second Mode Material on the Second Screen

21.3 Showing the Previous Slide on the Second Screen

V Howtos

139
139
141
146
146
148
148

152
152
152
154
157
159
160
160
160
162
163
163
164
165

167
167
170
170
171
171
171
171
172
172

174

175
175
176
177

179

180
180
180
180
182
183
183

187
187
187
188

190

22 How To Uncover Things Piecewise 191

22.1 Uncovering an Enumeration Piecewise o L. 191
22.2 Hilighting the Current Item in an Enumeration 191
22.3 Changing Symbol Before an Enumeration oL 0L 192
22.4 Uncovering Tagged Formulas Piecewise 192
22.5 Uncovering a Table Rowwise 193
22.6 Uncovering a Table Columnwise 193
23 How To Import Presentations Based on Other Packages and Classes 194
23.1 Prosper and HA-Prosper 194
23.2 Seminar e e e e 199
23.3 FollTEX o e e 201
23.4 TEXPower e 204
Index 206

1 Introduction

BEAMER is a I¥TEX class for creating presentations that are held using a projector, but it can also be
used to create transparency slides. Preparing presentations with BEAMER is different from preparing them
with WYSIWYG programs like OpenOffice’s Impress, Apple’s Keynotes, or KOffice’s KPresenter. A BEAMER
presentation is created like any other IXTEX document: It has a preamble and a body, the body contains
\sections and \subsections, the different slides (called frames in BEAMER) are put in environments, they
are structured using itemize and enumerate environments, and so on. The obvious disadvantage of this
approach is that you have to know I#TEX in order to use BEAMER. The advantage is that if you know I2#TEX,
you can use your knowledge of IATEX also when creating a presentation, not only when writing papers.

1.1 Main Features

The list of features supported by BEAMER is quite long (unfortunately, so is presumably the list of bugs
supported by BEAMER). The most important features, in my opinion, are:

e You can use BEAMER both with pdflatex and latex+dvips.

e The standard commands of IATEX still work. A \tableofcontents will still create a table of contents,
\section is still used to create structure, and itemize still creates a list.

e You can easily create overlays and dynamic effects.
e Themes allow you to change the appearance of your presentation to suit you purposes.

e The themes are designed to be usable in practice, they are not just for show. You will not find such
nonsense as a green body text on a picture of a green meadow.

e The layout, the colors, and the fonts used in a presentation can easily be changed globally, but you
still also have control over the most minute detail.

e A special style file allows you to use the XTEX-source of a presentation directly in other KTEX classes
like article or book. This makes it easy to create presentations out of lecture notes or lecture notes
out of presentations.

e The final output is typically a pDF-file. Viewer applications for this format exist for virtually every
platform. When bringing your presentation to a conference on a memory stick, you do not have to worry
about which version of the presentation program might be installed there. Also, your presentation is
going to look exactly the way it looked on your computer.

1.2 History

I created BEAMER mainly in my spare time. Many other people have helped by writing me emails containing
suggestions for improvement or corrections or patches or whole new themes (by now I have gotten over
a thousand emails concerning BEAMER). Indeed, most of the development was only initiated by feature
requests and bug reports. Without this feedback, BEAMER would still be what it was originally intended to
be: a small private collection of macros that make using the seminar class easier. I created the first version
of BEAMER for my PhD defense presentation in February 2003. Month later, I put the package on CTAN at
the request of some colleagues. After that, things somehow got out of hand.

1.3 Acknowledgments

Where to begin? BEAMER’s development depends not only on me, but on the feedback I get from other
people. Many features have been implemented because someone requested them and I thought that these
features would be nice to have and reasonably easy to implement. Other people have given valuable feedback
on themes, on the user’s guide, on features of the class, on the internals of the implementation, on special
BTEX features, and on life in general. A small selection of these people includes (in no particular order
and I have surely forgotten to name lots of people who really, really deserve being in this list): Carsten
(for everything), Birgit (for being the first person to use BEAMER besides me), Tux (for his silent criticism),
Rolf Niepraschk (for showing me how to program KTEX correctly), Claudio Beccari (for writing part of the
documentation on font encodings), Thomas Baumann (for the emacs stuff), Stefan Miiller (for not loosing
hope), Uwe Kern (for XCOLOR), Hendri Adriaens (for HA-PROSPER), Ohura Makoto (for spotting typos).
People who have contributed to the themes include Paul Gomme, Manuel Carro, and Marlon Régis Schmitz.

1.4 How to Read this User’s Guide

You should start with the first part. If you have not yet installed the package, please read Section 2 first. If
you are new to BEAMER, you should next read the tutorial in Section 3. When you set down to create your
first real presentation using BEAMER, read Section 4 where the technical details of a possible workflow are
discussed. If you are still new to creating presentations in general, you might find Section 5 helpful, where
many guidelines are given on what to do and what not to do. Finally, you should browse through Section 6,
where you will find ready-to-use solution templates for creating talks, possibly even in the language you
intend to use.

The second part of this user’s guide goes into the details of all the commands defined in BEAMER, but it
also addresses other technical issues having to do with creating presentations (like how to include graphics
or animations).

The third part explains how you can change the appearance of your presentation easily either using
themes or by specifying colors or fonts for specific elements of a presentation (like, say, the font used for the
numbers in an enumerate).

The last part contains “howtos,” which are explanations of how to get certain things done using BEAMER.

This user’s guide contains descriptions of all “public” commands, environments, and concepts defined by
the BEAMER-class. The following examples show how things are documented. As a general rule, red text is
defined, green text is optional, blue text indicates special mode considerations.

\somebeamercommand [(optional arguments)]{{first argument)}{{second argument)}

Here you will find the explanation of what the command \somebeamercommand does. The green argu-
ment(s) is optional. The command of this example takes two parameters.

Ezample: \somebeamercommand [opt]{my argt{zxxx}

\begin{somebeamerenvironment} [(optional arguments)]{{first argument)}
(environment contents)
\end{somebeamerenvironment}

Here you will find the explanation of the effect of the environment somebeamerenvironment. As with
commands, the green arguments are optional.

FExample:
\begin{somebeamerenvironment}{Argument}

Some text.
\end{somebeamerenvironment}

Beamer-Template/-Color/-Font some beamer element

Here you will find an explanation of the template, color, and/or font some beamer element. A
“BEAMER-element” is a concept that is explained in more detail in Section 15. Roughly, an element is a
part of a presentation that is potentially typeset in some special way. Examples of elements are frame
titles, the author’s name, or the footnote sign. For most elements there exists a template, see Section 15
once more, and also a BEAMER-color and a BEAMER-font.

For each element, it is indicated whether a template, a BEAMER-color, and/or a BEAMER-font of the
name some beamer element exist. Typically, all three exist and are employed together when the
element needs to be typeset, that is, when the template is inserted the BEAMER-color and -font are
installed first. However, sometimes templates do not have a color or font associated with them (like
parent templates). Also, there exist BEAMER-colors and -fonts that do not have an underlying template.

Using and changing templates is explained in Section 15.3. Here is the essence: To change a template,
you can say

\setbeamertemplate{some beamer element}{your definition for this template}
Unfortunately, it is not quite trivial to come up with a good definition for some templates. Fortunately,
there are often predefined options for a template. These are indicated like this:

e [square] causes a small square to be used to render the template.

o [circlel{(radius)} causes circles of the given radius to be used to render the template.

You can install such a predefined option like this:

\setbeamertemplate{some beamer element}[square]
% Now squares are used

\setbeamertemplate{some beamer element}[cirlce]{3pt}

% New a circle is used

BEAMER-colors are explained in Section 16. Here is the essence: To change the foreground of the color
to, say, red, use

\setbeamercolor{some beamer element}{fg=red}

To change the background to, say, black, use:

\setbeamercolor{some beamer elementl}{bg=black}

You can also change them together using fg=red,bg=black. The background will not always be “hon-
oured,” since it is difficult to show a colored background correctly and an extra effort must be made by
the templates (while the foreground color is usually used automatically).

BEAMER-fonts are explained in Section 17. Here is the essence: To change the size of the font to, say,
large, use:
\setbeamerfont{some beamer element}{size=\large}

In addition to the size, you can use things like series=\bfseries to set the series, shape=\itshape to
change the shape, family=\sffamily to change the family, and you can use them in conjunction. Add
a star to the command to first “reset” the font.

PRESEN- As next to this paragraph, you will sometimes find the word PRESENTATION in blue next to some paragraph.
TATION This means that the paragraph applies only when you “normally typeset your presentation using KIRX or
pdfTEX.”
ARTICLE Opposed to this, a paragraph with ARTICLE next to it describes some behaviour that is special for the
article mode. This special mode is used to create lecture notes out of a presentation (the two can coexist
in one file).

LYX A paragraph with LyX next to it describes behaviour that is special when you use LyX to prepare your
presentation.

Part 1
Getting Started

This part helps you getting started. It starts with an explanation of how to install the class. Hopefully, this
will be very simple, with a bit of luck the whole class is already correctly installed! You will also find an
explanation of special things you should consider when using certain other packages.

Next, a short tutorial is given that explains most of the features that you’ll need in a typical presentation.
Following the tutorial you will find a “possible workflow” for creating a presentation. Following this workflow
may help you avoid problems later on.

This part includes a guidelines sections. Following these guidelines can help you create good presentations
(no guarantees, though). This guideline section is kept as general as possible; most what is said in that section
applies to presentations in general, independently of whether they have been created using BEAMER or not.

At the end of this part you will find a summary of the solutions templates that come with BEAMER. You
can use solutions templates to kick-start the creation of your presentation.

10

2 Installation

There are different ways of installing the BEAMER class, depending on your installation and needs. When
installing the class, you may need to install some other packages as well as described below. Before installing,
you may wish to review the GPL license under which the class is distributed, see Section 2.7 below.

2.1 Versions and Dependencies

This documentation is part of version 3.06 of the BEAMER class. BEAMER needs a reasonably recent version
of several standard packages to run and also the following versions of two special packages (later versions
should work, but not necessarily):

e pgf.sty version 1.00,

e xcolor.sty version 2.00.

If you use pdflatex or lyx, which are optional, you need
e lyx version 1.3.3. Other versions might work.

e pdflatex version 0.14 or higher. Earlier versions do not work.

2.2 Installation of Prebundled Packages

I do not create or manage prebundled packages of BEAMER, but, fortunately, nice other people do. I cannot
give detailed instructions on how to install these packages, since I do not manage them, but I can tell you
were to find them and I can tell you what these nice people told me on how to install them. If you have a
problem with installing, you might wish to have a look at the Debian page or MikTeX page first.

2.2.1 Debian

The command “aptitude install latex-beamer” should do the trick. If necessary, the packages pgf and
latex-xcolor will be automatically installed. Sit back and relax. In detail, the following packages are
installed:

http://packages.debian.org/latex-beamer
http://packages.debian.org/pgf
http://packages.debian.org/latex-xcolor

2.2.2 MiKTeX

For MiKTEX, use the update wizard to install the (latest versions of the) packages called latex-beamer,
pgf, and xcolor.

2.3 Installation in a texmf Tree

If, for whatever reason, you do not wish to use a prebundled package, the “right” way to install BEAMER is
to put it in a so-called texmf tree. In the following, I explain how to do this.
Obtain the latest source version (ending .tar.gz or .zip) of the BEAMER package from

http://sourceforge.net/projects/latex-beamer/

(most likely, you have already done this). Next, you also need at the PGF package, which can be found at
the same place. Finally, you need the XCOLOR package, which can also be found at that place (although the
version on CTAN might be newer).

In all cases, the packages contain a bunch of files (for the BEAMER class, beamer. cls is one of these files
and happens to be the most important one, for the PGF package pgf.sty is the most important file). You
now need to put these files in an appropriate texmf tree.

When you ask TEX to use a certain class or package, it usually looks for the necessary files in so-called
texmf trees. These trees are simply huge directories that contain these files. By default, TEX looks for files
in three different texmf trees:

e The root texmf tree, which is usually located at /usr/share/texmf/, c:\texmf\, or
c:\Program Files\TeXLive\texmf\.

11

LYX

LYX

e The local texmf tree, which is usually located at /usr/local/share/texmf/, c:\localtexmf\, or
c:\Program Files\TeXLive\texmf-local\.

e Your personal texmf tree, which is usually located in your home directory at ~/texmf/ or
“/Library/texmf/.

You should install the packages either in the local tree or in your personal tree, depending on whether
you have write access to the local tree. Installation in the root tree can cause problems, since an update of
the whole TEX installation will replace this whole tree.

Inside whatever texmf directory you have chosen, create the sub-sub-sub-directories

e texmf/tex/latex/beamer,
e texmf/tex/latex/pgf, and
e texmf/tex/latex/xcolor

and place all files in these three directories.
Finally, you need to rebuild TEX’s filename database. This done by running the command texhash or
mktexlsr (they are the same). In MiKTEX, there is a menu option to do this.

For usage of the BEAMER class with LyX, you have to do all of the above. Then you also have to make
LyX aware of the file beamer/lyx/layouts/beamer.layout. To do so, link (or, not so good in case of later
updates, copy) this file to the directory .1lyx/layouts/ in your home directory. Then use LyX’s Reconfigure
command to make Iy’X aware of this file.

For a more detailed explanation of the standard installation process of packages, you might wish to
consult http://www.ctan.org/installationadvice/. However, note that the BEAMER package does not
come with a .ins file (simply skip that part).

2.4 Updating the Installation

To update your installation from a previous version, simply replace everything in the directories like
texmf/tex/latex/beamer with the files of the new version. The easiest way to do this is to first delete
the old version and then proceed as described above. Sometimes, there are changes in the syntax of certain
command from version to version. If things no longer work that used to work, you wish to have a look at
the release notes and at the change log.

2.5 Testing the Installation

To test your installation, copy the file beamerexamplel.tex from the examples subdirectory to some place
where you usually create presentations. Then run the command pdflatex several times on the file and check
whether the resulting beamerexamplel.pdf looks correct. If so, you are all set.

To test the LyX installation, create a new file from the template generic-ornate-15min-45min.en.1lyx,
which is located in the directory beamer/solutions/generic-talks.

2.6 Compatibility with Other Packages and Classes

When using certain packages or classes together with the beamer class, extra options or precautions may be
necessary.

\usepackage{AlDraTex}
Graphics created using AlDraTex must be treated like verbatim text. The reason is that DraTex fiddles
with catcodes and spaces much like verbatim does. So, in order to insert a picture, either add the
fragile option to the frame or use the \defverbatim command to create a box containing the picture.
\usepackage{alltt}

Text in an alltt environment must be treated like verbatim text. So add the fragile option to frames
containing this environment or use \defverbatim.

12

http://www.ctan.org/installationadvice/

\usepackage{amsthm}

This package is automatically loaded since BEAMER uses it for typesetting theorems. If you do not wish
it to be loaded, which can be necessary especially in article mode if the package is incompatible with
the document class, you can use the class option noamsthm to suppress its loading. See Section 11.4 for
more details.

\usepackage [french] {babel}

When using the french style, certain features that clash with the functionality of the BEAMER class
will be turned off. For example, enumerations are still produced the way the theme dictates, not the
way the french style does.

\usepackage [spanish] {babel}

PRESEN- When using the spanish style, certain features that clash with the functionality of the BEAMER class
TATION will be turned off. In particular, the special behaviour of the pointed brackets < and > is deactivated.

ARTICLE To make the characters < and > active in article mode, pass the option activeospeccharacters to
the package beamerbasearticle. This will lead to problems with overlay specifications.

\usepackage{color}

PRESEN- The color package is automatically loaded by beamer.cls. This makes it impossible to pass options
TATION t6 color in the preamble of your document in the normal manner. To pass a (list of options) to color,
you can use the following class option:

\documentclass[color=(list of options)]{beamer}

Causes the (list of options) to be passed on to the color package. If the (list of options) contains
more than one option you must enclose it in curly brackets.

ARTICLE The color package is not loaded automatically if beamerarticle is loaded with the noxcolor option.

\usepackage{colortbl}

PRESEN- With newer versions of xcolor.sty, you need to pass the option table to xcolor.sty if you wish to
TATION yge colortbl. See the notes on xcolor below, on how to do this.

\usepackage{CJK}

PRESEN- When using the CJK package for using Asian fonts, you must use the class option CJK. See
TATION peamerexample4.tex for an example.

\usepackage{deluxetable}

PRESEN- The caption generation facilities of deluxetable are deactivated. Instead, the caption template is used.
TATION

\usepackage{DraTex}
See AlDraTex.

\usepackage{enumerate}

ARTICLE This package is loaded automatically in the presentation modes, but not in the article mode. If you
use its features, you have to load the package “by hand” in the article mode.

\documentclass{foils}

If you wish to emulate the foils class using BEAMER, please see Section 23.3.

\usepackage [T1]{fontenc}

Use this option only with fonts that have outline fonts available in the T1 encoding like Times or the
lmodern fonts. In a standard installation the standard Computer Modern fonts (the fonts Donald Knuth
originally designed and which are used by default) are not available in the T1 encoding. Using this
option with them will result in very poor rendering of your presentation when viewed with PDF viewer
applications like Acrobat or xpdf. To use the Computer Modern fonts with the T1 encoding, use the
package 1modern. See also Section 17.2.3.

13

\usepackage{fourier}

The package switches to a T1 encoding, but it does not redefine all fonts such that outline fonts (non-
bitmapped fonts) are used by default. For example, the sans-serif text and the typewriter text are not
replaced. To use outline fonts for these, write \usepackage{lmodern} before including the fourier
package.

\usepackage{HA-prosper}

You cannot use this package with BEAMER. However, you might try to use the package beamerprosper
instead, see Section 23.1.

\usepackage{hyperref}

PRESEN- The hyperref package is automatically loaded by beamer.cls and certain options are setup. In order
TATION pass additional options to hyperref or to override options, you can use the following class option:

\documentclass [hyperref=(list of options)]{beamer}
Causes the (list of options) to be passed on to the hyperref package.

FEzample: \documentclass [hyperref={bookmarks=false}]{beamer}

Alternatively, you can also use the \hypersetup command.

ARTICLE In the article version, you must include hyperref manually if you want to use it. It is not included
automatically.

\usepackage [utf8]{inputenc}

PRESEN- When using Unicode, you may wish to use one of the following class options:
TATION

\documentclass[ucs] {beamer}

Loads the package ucs and passes the correct Unicode options to hyperref. Also, it preloads the
Unicode code pages zero and one.

\documentclass[utf8] {beamer}

Same as the option ucs, but also sets the input encoding to utf8. You could also use the option
ucs and say \usepackage [utf8] {inputenc} in the preamble.

If you use a Unicode character outside the first two code pages (which includes the Latin alphabet
and the extended Latin alphabet) in a section or subsection heading, you have to use the command
\PreloadUnicodePage{(code page)} to give ucs a chance to preload these code pages. You will know
that a character has not been preloaded, if you get a message like “Please insert into preamble.” The
code page of a character is given by the unicode number of the character divided by 256.

\usepackage{listings}

PRESEN- Note that you must treat 1stlisting environments exactly the same way as you would treat verbatim
TATION environments. When using \defverbatim that contains a colored 1stlisting, use the colored option
of \defverbatim.

\usepackage{msc}

PRESEN- Since this packages uses pstricks internally, everything that applies to pstricks also applies to msc.
TATION

\usepackage{musixtex}

When using MusiXTEX to typeset musical scores, your document must be compiled with pdfelatex or
elatex instead of pdflatex or latex.

Inside a music environment, the \pause is redefined to match MusiXTEX’s definition (a rest during one
quarter of a whole). You can use the \beamerpause command to create overlays in this environment.
\usepackage{pdfpages}

Commands like \includepdf only work outside frames as they produce pages “by themselves.” You
may also wish to say

\setbeamercolor{background canvas}{bg=}

14

when you use such a command since the background (even a white background) will otherwise be printed
over the image you try to include.

Ezxample:

\begin{document}

\begin{frame}
\titlepage

\end{frame}

{
\setbeamercolor{background canvas}{bg=}
\includepdf{somepdfimages.pdf}

}

\begin{frame}
A normal frame.
\end{frame}
\end{document}
\usepackage{(professional font package)}

PRESEN- If you use a professional font package, BEAMER’s internal redefinition of how variables are typeset may
TATION interfere with the font package’s superior way of typesetting them. In this case, you should use the class
option professionalfont to suppress any font substitution. See Section 17.2.2 for details.
\documentclass{prosper}

If you wish to (partly) emulate the prosper class using BEAMER, please see Section 23.1.
\usepackage{pstricks}

You should add the option xcolor=pst to make xcolor aware of the fact that you are using pstricks.
\documentclass{seminar}

If you wish to emulate the seminar class using BEAMER, please see Section 23.2.

\usepackage{texpower}

You cannot use this package with BEAMER. However, you might try to use the package beamertexpower
instead, see Section 23.4.

\usepackage{textpos}

PRESEN- BEAMER automatically installs a white background behind everything, unless you install a different
TATION hackground template. Because of this, you must use the overlay option when using textpos, so that
it will place boxes before everything. Alternatively, you can install an empty background template, but
this may result in an incorrect display in certain situtations with older versions of the Acrobat Reader.

\usepackage{ucs}
See \usepackage [utf8] {inputenc}.
\usepackage{xcolor}

PRESEN- The xcolor package is automatically loaded by beamer.cls. The same applies as to color.
TATION

\documentclass[xcolor=(list of options)]{beamer}
Causes the (list of options) to be passed on to the xcolor package.

When using BEAMER together with the pstricks package, be sure to pass the xcolor=pst option to
BEAMER (and hence to xcolor).

ARTICLE The color package is not loaded automatically if beamerarticle is loaded with the noxcolor option.

2.7 License: The GNU Public License, Version 2

The BEAMER class is distributed under the GNU public license, version 2. In detail, this means the following
(the following text is copyrighted by the Free Software Foundation):

15

2.7.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

2.7.2 Terms and Conditions For Copying, Distribution and Modification

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

16

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(¢) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

(¢) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in accord with Subsubsection
b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

17

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automati-
cally receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

2.7.3 No Warranty

10. Because the program is licensed free of charge, there is no warranty for the program, to the extent
permitted by applicable law. Except when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is” without warranty of any kind, either expressed or implied,

18

11.

including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the program is with you. Should the
program prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event unless required by applicable law or agreed to in writing will any copyright holder, or
any other party who may modify and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or consequential damages arising out of the
use or inability to use the program (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility of such damages.

19

LYX

LYX

3 Tutorial: Euclid’s Presentation

This section presents a short tutorial that focuses on those features of BEAMER that you are likely to use
when you start using BEAMER. It leaves out all the glorious details that are explained in great detail later
on.

3.1 Problem Statement

We wish to help Prof. Euclid of the University of Alexandria to create a presentation on his latest discovery:
There are infinitely many prime numbers! Euclid wrote a paper on this and it got accepted at the 27th
International Symposium on Prime Numbers —280 (ISPN ’80). Euclid wishes to use the BEAMER class to
create a presentation for the conference. On the conference webpage he found out that he will have twenty
minutes for his talk, including questions.

3.2 Solution Template

The first thing Euclid should do is to look for a solution template for his presentation. Having a look at
Section 6, he finds that the file

beamer/solutions/conference-talks/conference-ornate-20min.en.tex

might be appropriate. He creates a subdirectories presentation in the directory that contains the actual
paper and copies the solution template to this subdirectory, renaming to main.tex.

If Euclid uses LyX, he would choose “New from template” and pick the template file
beamer/solutions/conference-talks/conference-ornate-20min.en.lyx

He opens the file in his favorite editor. It starts
\documentclass{beamer}
which Euclid finds hardly surprising. Next comes a line reading
\mode<presentation>

which Euclid does not understand. Since he finds more stuff in the file that he does not understand, he
decides to ignore all of that for time being, hoping that it all serves some good purpose.

3.3 Title Material

The next thing that seems logical is the place where the \title command is used. Naturally, he replaces it
with

\title{There Is No Largest Prime Number}

since this was the title of the paper. He sees that the command \title also takes an optional “short”
argument in square brackets, which is shown in places where there is little space, but he decides that the
title is short enough by itself.

Euclid next adjusts the \author and \date fields as follows:

\author{Euclid of Alexandria}
\date[ISPN ’80]{27th International Symposium of Prime Numbers}

For the date, he felt that the name was a little long, so a short version is given (ISPN ’80). On second
thought, Euclid decides to add his email address and replaces the \author field as follows:

\author[Euclid]{Euclid of Alexandria \\ \texttt{euclid@alexandria.edu}}

Somehow Euclid does not like the fact that there is no “\email” command in BEAMER. He decides to write
an email to BEAMER’s author, asking him to fix this, but postpones this for later when the presentation is
finished.

There are two fields that FEuclid does not know, but whose meaning he can guess: \subtitle and
\institute. He adjusts them. (Euclid does not need to use the \and command, which is used to separate
several authors, nor the \inst command, which just makes its argument a superscript).

In IyX, Euclid just edits the first lines having of the different styles like Author or Title or Date. He deletes
the optional short fields.

20

LYX

LYX

3.4 The Title Page Frame

The next thing in the file that seems interesting is where the first “frame” is created, right after the
\begin{document}:

\begin{frame}
\titlepage
\end{frame}

In BEAMER, a presentation consists of a series of frames. Each frame in turn may consist of several slides
(if there is more than one, they are called overlays). Normally, everything between \begin{frame} and
\end{frame} is put on a single slide. No page breaking is performed. So Euclid infers that the first frame
is “filled” by the title page, which seems quite logical.

The title page frame is created automatically by LyX. All other frames start with the style BeginFrame
and end either with the style EndFrame or, automatically, with the start of the next frame, subsection, or
section.

3.5 Creating the Presentation PDF File

Eager to find out how the first page will look, he invokes pdflatex on his file main.tex (twice). He could
also use latex (twice), followed by dvips, and then possibly ps2pdf. Then he uses the Acrobat Reader or
xpdf to view the resulting main.pdf. Indeed, the first page contains all the information Euclid has provided
until now. It even looks quite impressive with the colorful title and the rounded corners and the shadows,
but he is doubtful whether he should leave it like that. He decides to address this problem later.

FEuclid is delighted to find out that clicking on a section or subsection in the navigation bar at the tops
hyperjumps there. Also, the small symbols at the bottom seem to be clickable. Toying around with them for
a while, he finds that clicking on the arrows left or right of a symbols hyperjumps him backward or forward
one slide / frame / subsection / section. Clicking on the left or right side of the symbol hyperjumps to the
beginning or end of the frame / subsection / section. He finds the symbols quite small, but decides not write
an email to BEAMER’s author since he also thinks that bigger symbols would be distracting.

Euclid chooses View — PDF to view the resulting presentation. On a slow machine, this may take a while.
See Section 4.3.3 for ways of speeding up the compilation.

3.6 The Table of Contents

The next frame contains a table of contents:

\begin{frame}
\frametitle{Outline}
\tableofcontents

\end{frame}

Furthermore, this frame has an individual title (Outline). A comment in the frame says that Euclid might
wish to try to add the [pausesections] option. He tries this, changing the frame to:

\begin{frame}
\frametitle{Outline}
\tableofcontents [pausesections]

\end{frame}

After re-pdfl4TEXing the presentation, he finds that instead of a single slide, there are now two “table of
contents slides” in the presentation. On the first of these, only the first section is shown, on the second
both sections are shown (scanning down in the file, Euclid finds that, indeed, there are \section commands
introducing these sections). The effect of the pausesections seems to be that one can talk about the first
section before the second one is shown. Then, Euclid can press the down- or right-key, to show the complete
table of contents and can talk about the second section.

3.7 Sections and Subsections
The next commands Euclid finds are

\section{Motivation}
\subsection{The Basic Problem That We Studied}

21

LYX

These commands are given outside of frames. So Fuclid assumes that at the point of invocation they have
no direct effect, they only create entries in the table of contents. Having a “Motivation” section seems
reasonable to Euclid, but he changes the \subsection title.

As he looks at the presentation, he notices that his assumption was not quite true: each \subsection
command seems to insert a frame containing a table of contents into the presentation. Doubling back
he finds the command that causes this: The \AtBeginSubsection inserts a frame with only the current
subsection hilighted at the beginning of each section. If Euclid does not like this, he can just delete the
whole \AtBeginSubsection stuff and the table of contents at the beginning of each subsection disappear.

The \section and \subsection commands take optional short arguments. These short arguments are
used whenever a short form of the section of subsection name is needed. While this is in keeping with the
way BEAMER treats the optional arguments of things like \title, it is different from the usual way BTEX
treats an optional argument for sections (where the optional argument dictates what is shown in the table
of contents and the main argument dictates what is shown everywhere else; in BEAMER things are exactly
the other way round).

3.8 Creating a Simple Frame

Euclid then modifies the next frame, which is the first “real” frame of the presentation, as follows:

\begin{frame}

\frametitle{What Are Prime Numbers?}

A prime number is a number that has exactly two divisors.
\end{frame}

This yields the desired result. It might be a good idea to put some emphasis on the object being defined
(prime numbers). Euclid tries \emph but finds that too mild an emphasis. BEAMER offers the command
\alert, which is used like \emph and, by default, typesets its argument in bright red.

The \alert command needs to be entered in TEX-mode, which is awkward. It’s easier to just paint the text
in red.

Next, Euclid decides to make it even clearer that he is giving a definition by putting a definition
environment around the definition.

\begin{frame}
\frametitle{What Are Prime Numbers?}
\begin{definition}
A \alert{prime number} is a number that has exactly two divisors.
\end{definition}
\end{frame}

Other useful environments like theorem, lemma, proof, corollary, or example are also predefined by
BEAMER. As in amsmath, they take optional arguments that they show in brackets. Indeed, amsmath is
automatically loaded by BEAMER.

Since it is always a good idea to add examples, Euclid decides to add one:

\begin{frame}
\frametitle{What Are Prime Numbers?}
\begin{definition}
A \alert{prime number} is a number that has exactly two divisors.
\end{definition}
\begin{example}
\begin{itemize}
\item 2 is prime (two divisors: 1 and 2).
\item 3 is prime (two divisors: 1 and 3).
\item 4 is not prime (\alert{three} divisors: 1, 2, and 4).
\end{itemize}
\end{example}
\end{frame}

3.9 Creating Simple Overlays

The frame already looks quite nice, though, perhaps a bit colorful. However, Euclid would now like to show
the three items one after another, not all three right away. To achieve this, he adds \pause commands after
the first and second items:

22

LYX

LYX

\begin{itemize}
\item 2 is prime (two divisors: 1 and 2).

\pause
\item 3 is prime (two divisors: 1 and 3).

\pause
\item 4 is not prime (\alert{three} divisors: 1, 2, and 4).
\end{itemize}

By showing them incrementally, he hopes to focus the audience’s attention on the item he is currently
talking about. On second thought, he deletes the \pause stuff once more since in simple cases like the above
the pausing is rather silly. Indeed, Euclids has noticed that good presentations make use of this uncovering
mechanism only in special circumstances.

You add a pause using the Pause style.

Euclid finds that he can also add a \pause between the definition and the example. So, \pauses seem to
transcede environments, which Euclid finds quite useful. After some experimentation he finds that \pause
only does not work in align environments. He immediately writes an email about this to BEAMER’s author,
but receives a polite answer stating that the implementation of align does wicked things and there is no fix
for this. Also, Euclid is pointed to the last part of the user’s guide, where a workaround is described.

3.10 Using Overlay Specifications

The next frame is to show his main argument and is put in a “Results” section. Euclid desires a more
complicated overlay behavior for this frame: In an enumeration of four points he wishes to uncover the
points one-by-one, but he wishes the fourth point to be shown at the same time as the first. The idea is to
illustrate his new proof method, namely proof by contradiction, where a wrong assumption is brought to a
contradiction at the end after a number of intermediate steps that are not important at the beginning. For
this, Euclid uses overlay specifications:

\begin{frame}
\frametitle{There Is No Largest Prime Number}
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}

\begin{theorem}
There is no largest prime number.

\end{theorem}

\begin{proof}
\begin{enumerate}
\item<1-> Suppose p were the largest prime number.
\item<2-> Let 9 be the product of the first p numbers.
\item<3-> Then $q + 1$ is not divisible by any of them.
\item<1-> Thus $q + 1$ is also prime and greater than p.\qedhere
\end{enumerate}

\end{proof}

\uncover<4->{The proof used \textit{reductio ad absurdum}.}

\end{frame}

The overlay specifications are given in pointed brackets. The specification <1-> means “from slide 1 on.”
Thus, the first and fourth item are shown on the first slide of the frame, but the other two items are not shown.
Rather, the second point is shown only from the second slide onward. BEAMER automatically computes the
number of slides needed for each frame. More generally, overlay specification are lists of numbers or number
ranges where the start or ending of a range can be left open. For example -3,5-6,8- means “on all slides,
except for slides 4 and 7.”

You add overlay specifications to the items by entering TEX-mode (press on the little TEX icon) and writing
<1->. This TgX-text should be placed right at the beginning of the item.

The \gedhere is used to put the QED symbol at the end of the line inside the enumeration. Normally,
the QED symbol is automatically inserted at the end of a proof environment, but that would be on an ugly
empty line here.

The \item command is not the only command that takes overlay specifications. Another useful command
that takes one is the \uncover command. It only shows its argument on the slides specified in the overlay
specification. On all other slides, the argument is hidden (though it still occupies space). The command
\only is similar and Euclid could also have tried

23

\only<4->{The proof used \textit{reductio ad absurdum}.}

On non-specified slides the \only command simply “throws its argument away” and the argument does not
occupy any space. This leads to different heights of the text on the first three slides and of the fourth slide.
If the text is centered vertically, this will cause the text to “wobble” and thus \uncover should be used.
However, you sometimes wish things to “really disappear” on some slides and then \only is useful. Euclid
could also have used the class option t, which causes the text in frames to be vertically flushed to the top.
Then a differing text height does not cause wobbling. Vertical flushing can also be achieved for only a single
frame be by giving the optional argument [t] like this to the frame environment as in

\begin{frame}[t]
\frametitle{There Is No Largest Prime Number}

\end{frame}

Vice versa, if the t class option is given, a frame can be vertically centered using the [c] option for the
frame.

It turns out that certain environments, including the theorem and proof environments above, also take
overlay specifications. If such a specification is given, the whole theorem or proof is only shown on the
specified slides.

3.11 Structuring a Frame

On the next frame, Euclid wishes to contrast solved and open problems on prime numbers. Since there
is no “Solved problem” environment similar to the theorem environment, Euclid decides to use the block
environment, which allows him to give an arbitrary title:

\begin{frame}
\frametitle{What’s Still To Do7}
\begin{block}{Answered Questions}
How many primes are there?
\end{block}
\begin{block}{Open Questions}
Is every even number the sum of two primes?
\end{block}
\end{frame}

He could also have defined his own theorem-like environment by putting the following in the preamble:

\newtheorem{answeredquestions} [theorem] {Answered Questions}
\newtheorem{openquestions}[theorem] {0pen Questions}

The optional argument [theorem] ensures that these environments are numbered the same way as everything
else. Since these numbers are not shown anyway, it does not really matter whether they are given, but it’s
a good practice and, perhaps, Euclid might need these numbers some other time.

An alternative would be nested itemize:

\begin{frame}
\frametitle{What’s Still To Do?7}
\begin{itemize}
\item Answered Questions
\begin{itemize}
\item How many primes are there?
\end{itemize}
\item Open Questions
\begin{itemize}
\item Is every even number the sum of two primes?
\end{itemize}
\end{itemize}
\end{frame}

Pondering on the problem some more, Euclid decides that it would be even nicer to have the “Answered
Questions” on the left and the “Open Questions” on the right, so as to create a stronger visual contrast. For
this, he uses the columns environment. Inside this environment, \column commands create new columns.

24

\begin{frame}
\frametitle{What’s Still To Do7}
\begin{columns}
\column{.5\textwidth}
\begin{block}{Answered Questions}
How many primes are there?
\end{block}

\column{.5\textwidth}
\begin{block}{Open Questions}
Is every even number the sum of two primes?
\end{block}
\end{columns}
\end{frame}

Trying this, he is not quite satisfied with the result as the block on the left has a different height than the
one on the right. He thinks it would be nicer if they were vertically top-aligned. So he adds the [t] option
to the columns environment.

FEuclid is somewhat please to find out that a \pause at the end of the first column allows him to “uncover”
the second column only on the second slide of the frame.

3.12 Adding References

Euclid decides that he would like to add a citation to his open questions list, since he would like to attribute
the question to his good old friend Christian. Euclid is not really sure whether using a bibliography in his
talk is a good idea, but he goes ahead anyway.

To this end, he adds an entry to the bibliography, which he fortunately already finds in the solution file.
Having the bibliography in the appendix does not quite suit Euclid, so he removes the \appendix command.
He also notices <presentation> overlay specification and finds them a bit strange, but they do seem to hurt
either. Hopefully they do something useful. His bibliography looks like this:

\begin{thebibliography}{10}

\bibitem{Goldbach1742}[Goldbach, 1742]
Christian Goldbach.
\newblock A problem we should try to solve before the ISPN ’43 deadline,
\newblock \emph{Letter to Leonhard Euler}, 1742.

\end{thebibliography}

and he can then add a citation:

\begin{block}{Open Questions}
Is every even number the sum of two primes?
\cite{Goldbach1742}

\end{block}

3.13 Verbatim Text

One another frame, Euclid would like to show a listing of an algorithm his friend Eratosthenes has send
him (saying he came up with it while reorganizing his sieve collection). Euclid normally uses the verbatim
environment and sometimes also similar environments like 1stlisting to typeset listings. He can also use
them in BEAMER, but he must add the fragile option to the frame:

\begin{frame} [fragile]
\frametitle{An Algorithm For Finding Primes Numbers.}

\begin{verbatim}
int main (void)
{
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
if (is_primel[i])
{

std::cout << i << " ",

25

for (int j = i; j < 100; is_prime [j] = false, j+=i);
}

return O;
}
\end{verbatim}

\begin{uncoverenv}<2>
Note the use of \verb|std::|.
\end{uncoverenv}
\end{frame}

On second thought, Euclid would prefer to uncover part of the algorithm stepwise and to add an emphasis
on certain lines or parts of lines. He can use package like alltt for this, but in simple cases the environment
{semiverbatim} defined by BEAMER is more useful: It works like {verbatim}, except that \, {, and } retain
their meaning (one can typeset them by using \\, \{, and \}). Euclid might now typeset his algorithm as
follows:

\begin{frame} [fragile]
\frametitle{An Algorithm For Finding Primes Numbers.}

\begin{semiverbatim}

\uncover<i->{\alert<0>{int main (void)}}

\uncover<i->{\alert<0>{\{}}

\uncover<i->{\alert<1>{ \alert<4>{std::}vector<bool> is_prime (100, true);}}
\uncover<i->{\alert<i>{ for (int i = 2; i < 100; i++)}}
\uncover<2->{\alert<2>{ if (is_prime[i])}}

\uncover<2->{\alert<0>{ \{}}

\uncover<3->{\alert<3>{ \alert<4>{std::}cout << i << " ";}}
\uncover<3->{\alert<3>{ for (int j = i; j < 100;3}}
\uncover<3->{\alert<3>{ is_prime [j] = false, j+=i);}}
\uncover<2->{\alert<0>{ \}}}

\uncover<1i->{\alert<0>{ return 0;}}
\uncover<i->{\alert<0>{\}}}
\end{semiverbatim}

\visible<4->{Note the use of \alert{\texttt{std::}}.}
\end{frame}

The \visible command does nearly the same as \uncover. A difference occurs if the command
\setbeamercovered{transparent} has been used to make covered text “transparent” instead, \visible
still makes the text completely “invisible” on non-specified slides. Euclid has the feeling that the naming
convention is a bit strange, but cannot quite pinpoint the problem.

3.14 Changing the Way Things Look I: Theming

With the contents of this talk fixed, Euclid decides to have a second look at the way things look. He goes
back to the beginning and finds the line

\usetheme{Warsaw}

By substituting other cities (he notices that these cities seem to have in common that there has been
a workshop or conference on theoretical computer science there at which always the same person had a
paper, attended, or gave a talk) Euclid can change the way his presentation is going to look. He decides to
choose some theme that is reasonably simple but, since his talk is not too short, shows a bit of navigational
information.

He settles on the Frankfurt theme but decides that the light-dark contrast is too strong. He adds

\usecolortheme{seahorse}
\usecolortheme{rose}

The result seems some more subdued to him.
Euclid decides that the font used for the titles is not quite classical enough (classical fonts are the latest
chic in Alexandria). So, he adds

\usefonttheme [onlylarge] {structuresmallcapsserif}

26

Euclid notices that the small fonts in the navigation bars are a bit hard to read as they are so thin.
Adding the following helps:

\usefonttheme [onlysmall] {structurebold}

3.15 Changing the Way Things Look II: Colors and Fonts

Since FEuclid wants to give a perfect talk, he decides that the font used for the title simply has to be a serif
italics. To change only the font used for the title, Euclid uses the following command:

\setbeamerfont{title}{shape=\itshape,family=\rmfamily}

He notices that the font is still quite large (which he likes), but wonders why this is the case since he did not
specify this. The reason is that calls of \setbeamerfont accumulate and the size was already set to \large
by some font theme. Using the starred version of \setbeamerfont “resets” the font.

Euclid decides that he would also like to change the color of the title to a dashing red, though, perhaps,
with a bit of black added. He uses the following command:

\setbeamercolor{title}{fg=red!80!black}

Trying the following command, Euclid is delighted to find that specifying a background color also has an
effect:

\setbeamercolor{title}{fg=red!80!black,bg=red!20!white}

Finally, Euclid is satisfied with the presentation and goes ahead and gives a great talk at the conference,
making many new friends. He also writes that email to BEAMER’s author containing that long list of things
that he missed in BEAMER or that do not work. He is a bit disappointed to learn that it might take till
ISPN ’79 for all these things to be taken care of, but he also understands that BEAMER’s author also needs
some time to do research or otherwise he would have nothing to given presentations about.

27

PRESEN-
TATION

LYX

4 Workflow For Creating a Beamer Presentation

This section presents a possible workflow for creating a BEAMER presentation and possibly a handout to go
along with it. Technical questions are addressed, like which programs to call with which parameters.

4.1 Step One: Setup the Files

It is advisable that you create a folder for each presentation. Even though your presentation will usually
reside in a single file, TEX produces so many extra files that things can easily get very confusing otherwise.
The folder’s name should ideally start with the date of your talk in ISO format (like 2003-12-25 for a
Christmas talk), followed by some reminder text of what the talk is all about. Putting the date at the front
in this format causes your presentation folders to be listed nicely when you have several of them residing in
one directory. If you use an extra directory for each presentation, you can call your main file main. tex.

To create an initial main.tex file for your talk, copy an existing file from the beamer/solutions directory
and adapt it to your needs. A list of possible BEAMER solutions that contain templates for presentation TEX-
files can be found below.

If you wish your talk to reside in the same file as some different, non-presentation article version of your
text, it is advisable to setup a more elaborate file scheme. See Section 20.2.2 for details.

You can either open a new file and then select beamer as the document class or you say “New from template”
and then use a template from the directory beamer/solutions.

4.2 Step Two: Structure Your Presentation

The next step is to fill the presentation file with \section and \subsection to create a preliminary outline.
You'll find some hints on how to create a good outline in Section 5.1.

Put \section and \subsection commands into the (more or less empty) main file. Do not create any
frames until you have a first working version of a possible table of contents. The file might look like this:

\documentclass{beamer}
% This is the file main.tex

\usetheme{Berlin}

\title{Example Presentation Created with the Beamer Package}
\author{Till Tantau}
\date{\today}

\begin{document}

\begin{frame}
\titlepage
\end{frame}

\section*{0Outline}

\begin{frame}
\tableofcontents

\end{frame}

\section{Introduction}
\subsection{Overview of the Beamer Class}
\subsection{Overview of Similar Classes}

\section{Usage}
\subsection{...}
\subsection{...}

\section{Examples}

\subsection{...}
\subsection{...}

28

PRESEN-
TATION

LYX

PRESEN-
TATION

LYX

PRESEN-
TATION

LYX

\begin{frame}
\end{frame} % to enforce entries in the table of contents

\end{document}

The empty frame at the end (which should be deleted later) ensures that the sections and subsections are
actually part of the table of contents. This frame is necessary since a \section or \subsection command
following the last page of a document has no effect.

4.3 Step Three: Creating a PDF or PostScript File

Once a first version of the structure is finished, you should try to create a first PDF or PostScript file of
your (still empty) talk to ensure that everything is working properly. This file will only contain the title
page and the table of contents.

Use “View” to check whether the presentation compiles fine. Note that you must put the table of contents
inside a frame, but that the title page is created automatically.

4.3.1 Creating PDF

To create a PDF version of this file, run the program pdflatex on main.tex at least twice. Your need to run
it twice, so that TEX can create the table of contents. (It may even be necessary to run it more often since
all sorts of auxiliary files are created.) In the following example, the greater-than-sign is the prompt.

> pdflatex main.tex

. lots of output ...
> pdflatex main.tex

. lots of output ...

You can next use a program like the Acrobat Reader or xpdf to view the resulting presentation.

> acroread main.pdf
Choose “View pdf” to view your presentation.

4.3.2 Creating PostScript

To create a PostScript version, you should first ascertain that the HYPERREF package (which is automatically
loaded by the BEAMER class) uses the option dvips or some compatible option, see the documentation of the
HYPERREF package for details. Whether this is the case depends on the contents of your local hyperref.cfg
file. You can enforce the usage of this option by passing dvips or a compatible option to the BEAMER class
(write \documentclass [dvips]{beamer}), which will pass this option on to the HYPERREF package.

You can then run latex twice, followed by dvips.

> latex main.tex

... lots of output ...
> latex main.tex

... lots of output ...
> dvips -P pdf main.dvi

The option (-P pdf) tells dvips to use Type 1 outline fonts instead of the usual Type 3 bitmap fonts.
You may wish to omit this option if there is a problem with it.
You can convert a PostScript file to a pdf file using

> ps2pdf main.ps main.pdf

Use “View Postscript” to view the PostScript version.

29

LYX

4.3.3 Ways of Improving Compilation Speed

While working on your presentation, it may sometimes be useful to TEX your .tex file quickly and have
the presentation contain only the most important information. This is especially true if you have a slow
machine. In this case, you can do several things to speedup the compilation. First, you can use the draft
class option.

\documentclass[draft] {beamer}

Causes the headlines, footlines, and sidebars to be replaced by gray rectangles (their sizes are still
computed, though). Many other packages, including pgf and hyperref, also “speedup” when this
option is given.

Second, you can use the following command:

\includeonlyframes{(frame label list)}

This command behaves a little bit like the \includeonly command: Only the frames mentioned in the
list are included. All other frames are suppressed. Nevertheless, the section and subsection commands
are still executed, so that you still have the correct navigation bars. By labeling the current frame as,
say, current and then saying \includeonlyframes{current}, you can work on a single frame quickly.

The (frame label list) is a comma-separated list (without spaces) of the names of frames that have been
labeled. To label a frame, you must pass the option label=(name) to the \frame command or frame
environment.

FEzxzample:

\includeonlyframes{examplel,example3}

\frame [label=examplel]
{This frame will be included. }

\frame [label=example?2]
{This frame will not be included. }

\frame{This frame will not be included.}

\againframe{examplel} % Will be included

4.4 Step Four: Create Frames

Once the table of contents looks satisfactory, start creating frames for your presentation by adding frame
environments. You'll find guidelines on what to put on a frame in Section 5.1.3.

To create a frame, use the style “BeginFrame”. The frame title is given on the line of this style. The frame
ends automatically with the start of the next frame, with a section or subsection command, and with an
empty line in the style “EndFrame”. Note that the last frame of your presentation must be ended using
“EndFrame” and that the last frame before the appendix must be ended this way.

4.5 Step Five: Test Your Presentation

Always test your presentation. For this, you should vocalize or subvocalize your talk in a quiet environment.
Typically, this will show that your talk is too long. You should then remove parts of the presentation, such
that it fits into the allotted time slot. Do not attempt to talk faster in order to squeeze the talk into the
given amount of time. You are almost sure to loose your audience this way.

Do not try to create the “perfect” presentation immediately. Rather, test and retest the talk and modify
it as needed.

4.6 Step Six: Create a Handout
4.6.1 Creating the Handout

Once your talk is fixed, you can create a handout, if this seems appropriate. For this, you can use the class
option handout as explained in Section 20.1. Typically, you might wish to put several handout slides on one
page, see below on how to do this easily.

30

LYX

You may also wish to create an article version of your talk. An “article version” of your presentation is
a normal TEX text typeset using, for example, the document class article or perhaps llncs or a similar
document class. The BEAMER class offers facilities to have this version coexist with your presentation version
in one file and to share code. Also, you can include slides of your presentation as figures in your article version.
Details on how to setup the article version can be found in Section 20.2.

Creating an article version is not really possible in LyX. You can try, but I would not advise it.

4.6.2 Printing the Handout

The easiest way to print a presentation is to user the Acrobat Reader with the option “expand small pages to
paper size” form the printer dialog enabled. This is necessary, because slides are only 128mm times 96mm.

For the PostScript version and for printing multiple slides on a single page this simple approach does
not work. In such cases you can use the pgfpages package, which works directly both with pdflatex and
latex plus dvips. Note however that this package destroys hyperlinks. This is due to fundamental flaws in
the PDF-specification and not likely to change.

The pgfpages can do all sorts of tricks with pages. The most important one for printing BEAMER slides
is the following command:

\usepackage{pgfpages}
\pgfpagelayout{resize} [adpaper,border shrink=5mm,landscape]

This says “Resize all pages to landscape A4 pages, no what their original size was, but shrink the pages
by 5mm, so that there is a bit of a border around everything.” Naturally, instead of adpaper you can also use
letterpaper or any of the other standard paper sizes. For further options and details see the documentation
of pgfpages.

The second thing you might wish to do is to put several slides on a single page. This can be done as
follows:

\usepackage{pgfpages}
\pgfpagelayout{2 on 1}[adpaper,border shrink=5mm]

This says “Put two pages on one page and then resize everything so that it fits on A4 paper.” Note that
this time we do not need landscape as the resulting page is, after all, not in landscape mode.

Instead of 2 on 1 you can also use 4 on 1, but then with landscape once more, and also 8 on 1 and
even 16 on 1 to get a grand (though unreadable) overview.

If you put several slides on one page and if these slides normally have a white background, it may be
useful to write the following in your preamble:

\mode<handout>{\setbeamercolor{background canvas}{bg=black!5}}

This will cause the slides of the handout version to have a very light gray background. This makes it
easy to discern the slides’ border if several slides are put on one page.

31

5 Guidelines for Creating Presentations

In this section I sketch the guidelines that I try to stick to when I create presentations. These guidelines
either arise out of experience, out of common sense, or out of recommendations by other people or books.
These rules are certainly not intended as commandments that, if not followed, will result in catastrophe.
The central rule of typography also applies to creating presentations: Every rule can be broken, but no rule
may be ignored.

5.1 Structuring a Presentation
5.1.1 Know the Time Constraints

When you start to create a presentation, the very first thing you should worry about is the amount of time
you have for your presentation. Depending on the occasion, this can be anything between 2 minutes and
two hours.

e A simple rule for the number of frames is that you should have at most one frame per minute.
e In most situations, you will have less time for your presentation that you would like.

e Do not try to squeeze more into a presentation than time allows for. No matter how important some
detail seems to you, it is better to leave it out, but get the main message across, than getting neither
the main message nor the detail across.

In many situations, a quick appraisal of how much time you have will show that you won’t be able to
mention certain details. Knowing this can save you hours of work on preparing slides that you would have
to remove later anyway.

5.1.2 Global Structure

To create the “global structure” of a presentation, with the time constraints in mind, proceed as follows:
e Make a mental inventory of the things you can reasonably talk about within the time available.
e Categorize the inventory into sections and subsections.

e For very long talks (like a 90 minute lecture), you might also divide your talk into independent parts
(like a “review of the previous lecture part” and a “main part”) using the \part command. Note that
each part has its own table of contents.

e Do not feel afraid to change the structure later on as you work on the talk.

Parts, Section, and Subsections.
e Do not use more than four sections and not less than two per part.

Even four sections are usually too much, unless they follow a very easy pattern. Five and more sections
are simply too hard to remember for the audience. After all, when you present the table of contents, the
audience will not yet really be able to grasp the importance and relevance of the different sections and will
most likely have forgotten them by the time you reach them.

e Ideally, a table of contents should be understandable by itself. In particular, it should be comprehensible
before someone has heard your talk.

e Keep section and subsection titles self-explaining.
e Both the sections and the subsections should follow a logical pattern.

e Begin with an explanation of what your talk is all about. (Do not assume that everyone knows this.
The Ignorant Audience Law states: Someone important in the audience always knows less than you
think everyone should know, even if you take the Ignorant Audience Law into account.)

e Then explain what you or someone else has found out concerning the subject matter.

32

e Always conclude your talk with a summary that repeats the main message of the talk in a short and
simple way. People pay most attention at the beginning and at the end of talks. The summary is your
“second chance” to get across a message.

e You can also add an appendix part using the \appendix command. Put everything into this part that
you do not actually intend to talk about, but that might come in handy when questions are asked.

e Do not use subsubsections, they are evil.

Giving an Abstract In papers, the abstract gives a short summary of the whole paper in about 100
words. This summary is intend to help readers appraise whether they should read the whole paper or not.

e Since you audience is unlikely to flee after the first slide, in a presentation you usually do not need to
present an abstract.

e However, if you can give a nice, succinct statement of your talk, you might wish to include an abstract.
e If you include an abstract, be sure that it is not some long text but just a very short message.

e Never, ever reuse a paper abstract for a presentation, except if the abstract is “We show P = NP” or
“We show P # NP”

e If your abstract is one of the above two, double-check whether your proof is correct.

Numbered Theorems and Definitions. A common way of globally structuring (math) articles and
books is to use consecutively numbered definitions and theorems. Unfortunately, for presentations the
situation is a bit more complicated and I would like to discourage using numbered theorems in presentations.
The audience has no chance of remembering these numbers. Never say things like “now, by Theorem 2.5
that I showed you earlier, we have ...” It would be much better to refer to, say, Kummer’s Theorem instead
of Theorem 2.5. If Theorem 2.5 is some obscure theorem that does not have its own name (unlike Kummer’s
Theorem or Main Theorem or Second Main Theorem or Key Lemma), then the audience will have forgotten
about it anyway by the time you refer to it again.

In my opinion, the only situation in which numbered theorems make sense in a presentation is in a lecture,
in which the students can read lecture notes in parallel to the lecture where the theorems are numbered in
exactly the same way.

If you do number theorems and definition, number everything consecutively. Thus if there are one
theorem, one lemma, and one definition, you would have Theorem 1, Lemma 2, and Definition 3. Some
people prefer all three to be numbered 1. I would strongly like to discourage this. The problem is that this
makes it virtually impossible to find anything since Theorem 2 might come after Definition 10 or the other
way round. Papers and, worse, books that have a Theorem 1 and a Definition 1 are a pain.

e Do not inflict pain on other people.

Bibliographies. You may also wish to present a bibliography at the end of your talk, so that people can
see what kind of “further reading” is possible. When adding a bibliography to a presentation, keep the
following in mind:

e It is a bad idea to present a long bibliography in a presentation. Present only very few references.
(Naturally, this applies only to the talk itself, not to a possible handout.)

e If you present more references than fit on a single slide you can be almost sure that none of them will
not be remember