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Introduction
• sets S ⊂ R2 of n points in general position

• How many empty triangles exist?

◦ Katchalski and Meir, 1988:(
n−1
2

)
≤ # empty triangles ≤ cn2

◦ Dehnhardt, 1987: Bárány and Füredi, 1987:

n2−5n+10 ≤ # empty triangles ≤ 2n2

◦ Bárány and Valtr, 2004:

# empty triangles ≤ 1.6195 . . . n2 + o(n2)

◦ Aichholzer, Fabila-Monroy, H., Huemer, Pilz,
and Vogtenhuber, 2012:

n2− 32n
7

+ 22
7
≤ # empty triangles
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• How many empty monochromatic triangles exist?

◦ Devillers, Hurtado, Károlyi, and Seara, 2003:
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n
4

⌉
−2 compatible empty monochr. triangles

k = 3: ∃ sets with no empty monochr. triangles
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Introduction
• k-colored sets S ⊂ R2 of n points in general position

• How many empty monochromatic triangles exist?

◦ Devillers, Hurtado, Károlyi, and Seara, 2003:

k = 2: ≥
⌈
n
4

⌉
−2 compatible empty monochr. triangles

k = 3: ∃ sets with no empty monochr. triangles

◦ Aichholzer, Fabila-Monroy, Flores-Peñaloza, H., Huemer,
and Urrutia, 2008:

k = 2: Ω
(
n

5/4
)

empty monochromatic triangles
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Introduction
• k-colored sets S ⊂ R2 of n points in general position

• How many empty monochromatic triangles exist?

◦ Devillers, Hurtado, Károlyi, and Seara, 2003:

k = 2: ≥
⌈
n
4

⌉
−2 compatible empty monochr. triangles

k = 3: ∃ sets with no empty monochr. triangles

◦ Aichholzer, Fabila-Monroy, Flores-Peñaloza, H., Huemer,
and Urrutia, 2008:

k = 2: Ω
(
n

5/4
)

empty monochromatic triangles

◦ Pach and Tóth, 2008:

k = 2: Ω
(
n

4/3
)

empty monochromatic triangles
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Introduction
• sets S ⊂ Rd of n points in general position

• Definition of a d-simplex:

◦ Convex hull of S′⊆S:

- Conv(S′): intersection of all convex sets containing S′

- CH(S′): boundary of Conv(S′)

◦ 0≤m≤d: ”m-simplex is Conv(X) (X⊆S, |X| = m+1)”

- vertices of an m-simplex: v∈X
- faces of an m-simplex: Conv(X ′), X ′⊂X

◦ Simplicial complex K:

- ”K is a set of interior disjoint empty d-simplices”
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Introduction
• sets S ⊂ Rd of n points in general position

• How many empty d-simplices exist?

◦ Katchalski and Meir, 1988:

at least
(
n−1
d

)
= Ω(nd) empty d-simplices

◦ Bárány and Füredi, 1987:
at most cd

(
n
d

)
= O(nd) expected empty d-simplices

in a random set
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• How many empty monochromatic d-simplices exist?

◦ Urrutia, 2003:
d = 3, k = 4: there always exists an empty
monochromatic d-simplex (tetrahedron)

◦ by proving that every S can be triangulated with more

than 3n tetrahedra
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Introduction
• k-colored sets S ⊂ Rd of n points in general position

• How many empty monochromatic d-simplices exist?

◦ Urrutia, 2003:
d = 3, k = 4: there always exists an empty
monochromatic d-simplex (tetrahedron)

◦ by proving that every S can be triangulated with more

than 3n tetrahedra

• Problem: triangulate S with many d-simplices
(”minmax”)
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Introduction
• sets S ⊂ Rd of n points in general position

• Large sized triangulations:

◦ Edelsbrunner, Preparata, and West, 1990:

R3: upper bound of 7
15
n2 +O(n) tetrahedra

◦ Brass, 2005:
R3: ∃ sets of points where every triangulation has

O(n
5/3) tetrahedra
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Introduction
• sets S ⊂ Rd of n points in general position

• Large sized triangulations:

◦ Edelsbrunner, Preparata, and West, 1990:

R3: upper bound of 7
15
n2 +O(n) tetrahedra

◦ Brass, 2005:
R3: ∃ sets of points where every triangulation has

O(n
5/3) tetrahedra

Rd: ∃ sets of points where every triangulation has

O(n
1
d
+ d−1

d
d d
2
e) d-simplices
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• sets S ⊂ Rd of n points in general position

• Large sized triangulations:

◦ Rothschild and Straus, 1985:
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Introduction
• sets S ⊂ Rd of n points in general position

• Large sized triangulations:

◦ Rothschild and Straus, 1985:

Rd: all triangulations have at least (n−d) d-simplices

◦ Urrutia, 2003:

R3: ∃ triangulation with more than 3n tetrahedra

• we generalize / improve to:

◦ ∃ triangulation with at least (dn+Ω(logn)) d-simplices
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Roadmap
LiteratureTheorem 1

”Lower Bound Theorem” Theorem 2

Large sized triangulations

Theorem 5: d>2

∃T , |T |≥dn+max
{
h,

log2(n)
2d

}
−cd

Lemmata 3, 4 cd=d3+d2+d

T1, T2
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Roadmap
Pulling complexesLiteratureTheorem 1

”Lower Bound Theorem” Theorem 2

Large sized triangulations

Theorem 5: d>2

∃T , |T |≥dn+max
{
h,

log2(n)
2d

}
−cd

Lemmata 3, 4 cd=d3+d2+d

Lemmata 6 – 13

Lemma 9 Lemma 10
T1, T2

T1

T5
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Roadmap
Pulling complexes

Order lemma

LiteratureTheorem 1
”Lower Bound Theorem” Theorem 2

Large sized triangulations

Theorem 5: d>2

∃T , |T |≥dn+max
{
h,

log2(n)
2d

}
−cd

Lemmata 3, 4 cd=d3+d2+d

Lemmata 6 – 13

Lemma 9 Lemma 10
T1, T2

T1

T5

Lemmata 14, 15
L3

T2 L6



10-5

P 23629–N18
Graz University of Technology
Institute for Software Technology

Thomas Hackl: Eurogiga Midterm Conference, July 9th – 13th, 2012

Roadmap
Pulling complexes

Discrepancy lemmaOrder lemma

LiteratureTheorem 1
”Lower Bound Theorem” Theorem 2

Large sized triangulations

Theorem 5: d>2

∃T , |T |≥dn+max
{
h,

log2(n)
2d

}
−cd

Lemmata 3, 4 cd=d3+d2+d

Lemmata 6 – 13

Lemma 9 Lemma 10
T1, T2

T1

T5

Lemmata 14, 15
L3

Lemmata 16, 18 – 23

T1T2 L6 L8, L11–13

Corollary 17
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Roadmap

Empty Monochromatic Simplices in k-Colored Point Sets

Pulling complexes

Discrepancy lemmaOrder lemma

LiteratureTheorem 1
”Lower Bound Theorem” Theorem 2

Large sized triangulations

Theorem 5: d>2

∃T , |T |≥dn+max
{
h,

log2(n)
2d

}
−cd

Lemmata 3, 4 cd=d3+d2+d

Lemmata 6 – 13

Lemma 9 Lemma 10
T1, T2

T1

T5

Lemmata 14, 15
L3

Lemmata 16, 18 – 23

T1T2 L6 L8, L11–13

Corollary 25: d>2, k=d+1

∃ linear number of EMS

Theorem 29: d≥k≥3

Ω(nd−k+1+2−d
) EMS

Theorems 24, 27 – 29
Corollaries 25, 26

Corollary 17

T5 L15

L19, 21–23
C17, L16
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Roadmap

Empty Monochromatic Simplices in k-Colored Point Sets Empty Monochromatic Simplices
in 2-Colored Point Sets

Pulling complexes

Discrepancy lemmaOrder lemma

LiteratureTheorem 1
”Lower Bound Theorem” Theorem 2

Large sized triangulations

Theorem 5: d>2

∃T , |T |≥dn+max
{
h,

log2(n)
2d

}
−cd

Lemmata 3, 4 cd=d3+d2+d

Lemmata 6 – 13

Lemma 9 Lemma 10
T1, T2

T1

T5

Lemmata 14, 15
L3

Lemmata 16, 18 – 23

T1T2 L6 L8, L11–13

Corollary 25: d>2, k=d+1

∃ linear number of EMS

Theorem 29: d≥k≥3

Ω(nd−k+1+2−d
) EMS

Theorems 24, 27 – 29
Corollaries 25, 26

Theorems 31 – 33
Observation 30

Corollary 17

Theorem 33: d≥2, k=2

Ω(nd−2/3 ) EMS

T5 L15 L14

L19, 21–23
C17, L16 L18, 20
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d>2, n>d(d+1), cd = d3+d2+d . . . constant
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Large sized triangulations: convex set
Lemma 3:

∀ S⊂Rd of n points in convex position

∃ triangulation of size at least (d+1)n− cd
Proof:
By Theorem 1: CH(S) has at least dn− d(d+1)

2
edges

d>2, n>d(d+1), cd = d3+d2+d . . . constant
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Large sized triangulations: convex set
Lemma 3:

∀ S⊂Rd of n points in convex position

∃ triangulation of size at least (d+1)n− cd
Proof:
By Theorem 1: CH(S) has at least dn− d(d+1)

2
edges

⇒ ∃ point p ∈ S with degree at least 2d in CH(S) as long as n>d(d+1)

d>2, n>d(d+1), cd = d3+d2+d . . . constant
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Large sized triangulations: convex set
Lemma 3:

∀ S⊂Rd of n points in convex position

∃ triangulation of size at least (d+1)n− cd
Proof:
By Theorem 1: CH(S) has at least dn− d(d+1)

2
edges

⇒ ∃ point p ∈ S with degree at least 2d in CH(S) as long as n>d(d+1)

• successively remove such points p from S until d(d+1) points left

• arbitrary triangulation Td(d+1) of size at least d(d+1)−d = d2

• insert points p in reversed order: ≥2d−(d−1) = d+1 d-simplices each

d>2, n>d(d+1), cd = d3+d2+d . . . constant



11-8

P 23629–N18
Graz University of Technology
Institute for Software Technology

Thomas Hackl: Eurogiga Midterm Conference, July 9th – 13th, 2012

Large sized triangulations: convex set
Lemma 3:

∀ S⊂Rd of n points in convex position

∃ triangulation of size at least (d+1)n− cd
Proof:
By Theorem 1: CH(S) has at least dn− d(d+1)

2
edges

⇒ ∃ point p ∈ S with degree at least 2d in CH(S) as long as n>d(d+1)

d>2, n>d(d+1), cd = d3+d2+d . . . constant

• successively remove such points p from S until d(d+1) points left

• arbitrary triangulation Td(d+1) of size at least d(d+1)−d = d2

• insert points p in reversed order: ≥2d−(d−1) = d+1 d-simplices each

⇒ triangulation of size at least d2+(d+1)(n−d(d+1)) = (d+1)n− cd
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Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

dn+max
{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

Proof: Two cases:
dn+max

{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

Proof: Two cases:

• |P | = h > log2(n)/(2d) > d(d+ 1)

dn+max
{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

Proof: Two cases:

• |P | = h > log2(n)/(2d) > d(d+ 1)

◦ ∃ triangulation of P of size at least (d+1)h− cd

dn+max
{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

Proof: Two cases:

• |P | = h > log2(n)/(2d) > d(d+ 1)

◦ ∃ triangulation of P of size at least (d+1)h− cd
◦ insert the remaining n−h points ⇒ d additional d-simplices each

dn+max
{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

Proof: Two cases:

• |P | = h > log2(n)/(2d) > d(d+ 1)

◦ ∃ triangulation of P of size at least (d+1)h− cd
◦ insert the remaining n−h points ⇒ d additional d-simplices each

◦ ⇒ resulting triangulation has size at least

dn+h−cd > dn+ log2(n)

2d
− cd

dn+max
{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

Proof: Two cases:

• |P | = h ≤ log2(n)/(2d)

dn+max
{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

Proof: Two cases:

• |P | = h ≤ log2(n)/(2d)

◦ Erdős-Szekeres: ∃ convex set Q ⊂S, |Q|> log2(n)

2
>d(d+1)

dn+max
{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

Proof: Two cases:

• |P | = h ≤ log2(n)/(2d)

◦ Erdős-Szekeres: ∃ convex set Q ⊂S, |Q|> log2(n)

2
>d(d+1)

◦ P ′=P\Q: ∃ triangulation of P ′∪Q of size at least (d+1)|Q|−cd+|P ′|

dn+max
{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

Proof: Two cases:

• |P | = h ≤ log2(n)/(2d)

◦ Erdős-Szekeres: ∃ convex set Q ⊂S, |Q|> log2(n)

2
>d(d+1)

◦ P ′=P\Q: ∃ triangulation of P ′∪Q of size at least (d+1)|Q|+|P ′|−cd
◦ insert the remaining points ⇒ d additional d-simplices each

dn+max
{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

Proof: Two cases:

• |P | = h ≤ log2(n)/(2d)

◦ Erdős-Szekeres: ∃ convex set Q ⊂S, |Q|> log2(n)

2
>d(d+1)

◦ P ′=P\Q: ∃ triangulation of P ′∪Q of size at least (d+1)|Q|+|P ′|−cd
◦ insert the remaining points ⇒ d additional d-simplices each

◦ ⇒ resulting triangulation has size at least

(d+1)|Q|+|P ′|−cd + d(n−|Q|−|P ′|) > dn+ log2(n)

2d
− cd

dn+max
{
h, log2(n)

2d

}
− cd
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Note on Theorem 5
• The constant cd in Lemma 3 can be improved to

◦ d3

2 + 13d2

12 + 7d
12 . . . equals 25 for d = 3

• For d = 3 Theorem 5 improves to

◦ 3n+ max
{
h, log2 n

6

}
− 25
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Note on Theorem 5

[EWP] H. Edelsbrunner, F.P. Preparata, and D.B. West.
Tetrahedrizing point sets in three dimensions. 1990.

• The constant cd in Lemma 3 can be improved to

◦ d3

2 + 13d2

12 + 7d
12 . . . equals 25 for d = 3

• For d = 3 Theorem 5 improves to

◦ 3n+ max
{
h, log2 n

6

}
− 25

• [EPW]: Every set of n points in general position in R3,
with h convex hull points, has a tetrahedrization of size
at least 3(n− h) + 4h− 25 for h ≥ 13.
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

dn+ max
{
h, log2(n)

2d

}
− cd
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Large sized triangulations
Theorem 5:

∀ S⊂Rd of n points in general position

d>2, n>4d2(d+1), h . . . number of convex hull points

∃ triangulation of size at least

dn+ log2(n)
2d − cd
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Pulling complexes
• d-simplicial complex K of S⊂Rd such that
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Pulling complexes
• d-simplicial complex K of S⊂Rd such that

• for a predefined subset X⊂S, (1 ≤ |X| ≤ d−1)

• each d-simplex contains X in its vertex set
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Pulling complexes
• d-simplicial complex K of S⊂Rd such that

• for a predefined subset X⊂S, (1 ≤ |X| ≤ d−1)

• each d-simplex contains X in its vertex set
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Pulling complexes
• d-simplicial complex K of S⊂Rd such that

• for a predefined subset X⊂S, (1 ≤ |X| ≤ d−1)

• each d-simplex contains X in its vertex set

p
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Pulling complexes
• d-simplicial complex K of S⊂Rd such that

• for a predefined subset X⊂S, (1 ≤ |X| ≤ d−1)

• each d-simplex contains X in its vertex set

p
} ⌈

n−1
2

⌉
⌊

n−1
2

⌋}Π
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Pulling complexes
• d-simplicial complex K of S⊂Rd such that

• for a predefined subset X⊂S, (1 ≤ |X| ≤ d−1)

• each d-simplex contains X in its vertex set

Π′

Π′′

p
} ⌈

n−1
2

⌉
⌊

n−1
2

⌋}Π
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Pulling complexes
• d-simplicial complex K of S⊂Rd such that

• for a predefined subset X⊂S, (1 ≤ |X| ≤ d−1)

• each d-simplex contains X in its vertex set

Π′

Π′′

p
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Pulling complexes
• d-simplicial complex K of S⊂Rd such that

• for a predefined subset X⊂S, (1 ≤ |X| ≤ d−1)

• each d-simplex contains X in its vertex set

Π′

Π′′

p
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Pulling complexes
Lemma 9:

◦ ∀ S⊂Rd (d>3) of n>4d2(d+1) points in general position

◦ ∀ point p∈S

⇒ ∃ d-dimensional simplicial complex of size at least

(d−1)n+ log2 n
2(d−1)−2cd−1

all whose d-simplices have p as a vertex
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Pulling complexes
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Pulling complexes

Π
X

r := |X|

(r−1)-d
imensional
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Pulling complexes

Π

Π′

X

r := |X|

(r−1)-d
imensional

(d−(r−1))-dimensional
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Pulling complexes

Π

Π′

X

r := |X|

(r−1)-d
imensional

(d−(r−1))-dimensional
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Pulling complexes

Π

Π′

X

r := |X|

(r−1)-d
imensional

(d−(r−1))-dimensional
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Pulling complexes
Lemma 10:

◦ ∀ S⊂Rd (d>3) of n>4d2(d+1) points in general position

◦ ∀X⊂S and 1 ≤ |X| ≤ d−3

⇒ ∃ d-dimensional simplicial complex of size at least

(d−|X|)n+ log2 n
2(d−|X|)−2cd−1

all whose d-simplices contain X in their vertex set



19-1

P 23629–N18
Graz University of Technology
Institute for Software Technology

Thomas Hackl: Eurogiga Midterm Conference, July 9th – 13th, 2012

”Generalized Order Lemma”
• ”Generalized Order Lemma” (Lemma 15)

◦ S ⊂ Rd set of n ≥ d+1 points in general position

◦ d > 2, h := |CH(S) ∩ S|

⇒ ∃ d-dimensional simplicial complex with at least

(d−1)n+ (n−h)
(2(1−d))

+2h−cd d-simplices, each

having at least one of their vertices in CH(S) ∩ S
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”Generalized Order Lemma”
• ”Generalized Order Lemma” (Lemma 15)

◦ S ⊂ Rd set of n ≥ d+1 points in general position

◦ d > 2, h := |CH(S) ∩ S|

⇒ ∃ d-dimensional simplicial complex with at least

(d−1)n+ (n−h)
(2(1−d))

+2h−cd d-simplices, each

having at least one of their vertices in CH(S) ∩ S

(n−h)
(2(1−d)) ⇔

√√√√√ ...√√
(n−h)

} (d−1) times
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Discrepancy
• k-colored set S ⊂ Rd of n points in general position

◦ k . . . constant, d ≥ 2

◦ (S1, . . . , Sk) . . . color classes of S

◦ Smax . . . biggest color class
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Discrepancy
• k-colored set S ⊂ Rd of n points in general position

◦ k . . . constant, d ≥ 2

◦ (S1, . . . , Sk) . . . color classes of S

◦ Smax . . . biggest color class

• discrepancy δ(S):
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Discrepancy
• k-colored set S ⊂ Rd of n points in general position

◦ k . . . constant, d ≥ 2

◦ (S1, . . . , Sk) . . . color classes of S

◦ Smax . . . biggest color class

• discrepancy δ(S):

◦ bichromatic (k=2): δ(S) := |Smax|−|S\Smax|
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Discrepancy
• k-colored set S ⊂ Rd of n points in general position

◦ k . . . constant, d ≥ 2

◦ (S1, . . . , Sk) . . . color classes of S

◦ Smax . . . biggest color class

• discrepancy δ(S):

◦ δ(S) :=
∑

(|Smax|−|Si|)
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Discrepancy
• k-colored set S ⊂ Rd of n points in general position

◦ k . . . constant, d ≥ 2

◦ (S1, . . . , Sk) . . . color classes of S

◦ Smax . . . biggest color class

• discrepancy δ(S):

◦ δ(S) :=
∑

(|Smax|−|Si|)
= (k−1)|Smax|−|S\Smax| = k|Smax|−n
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Proof:
◦ choose a set X⊂Smax of d−k+1 points
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”Generalized Discrepancy Lemma”

• Proof:
◦ choose a set X⊂Smax of d−k+1 points

→ apply Lemma 10 to Smax and X

- ∃ d-dimensional simplicial complex, KX(Smax)

- |KX(Smax)| ≥ (d−|X|)|Smax|+ log2 |Smax|
2(d−|X|) −2cd−1

• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Proof:
◦ choose a set X⊂Smax of d−k+1 points

→ |KX(Smax)| ≥ (d−|X|)|Smax|+ log2 |Smax|
2(d−|X|) −2cd−1
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Proof:
◦ choose a set X⊂Smax of d−k+1 points

→ |KX(Smax)| ≥ (d−|X|)|Smax|+ log2 |Smax|
2(d−|X|) −2cd−1
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Proof:
◦ choose a set X⊂Smax of d−k+1 points

→ |KX(Smax)| ≥ (k−1)|Smax|+ log2 |Smax|
2(k−1)

−2cd−1
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Proof:
◦ choose a set X⊂Smax of d−k+1 points

→ |KX(Smax)| ≥ (k−1)|Smax|+ log2 |Smax|
2(k−1)

−2cd−1 of which at least

◦ (k−1)|Smax|+ log2 |Smax|
2(k−1)

−2cd−1−|S \ Smax| are empty
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Proof:
◦ choose a set X⊂Smax of d−k+1 points

→ |KX(Smax)| ≥ (k−1)|Smax|+ log2 |Smax|
2(k−1)

−2cd−1 of which at least

◦ (k−1)|Smax|+ log2 |Smax|
2(k−1)

−2cd−1−|S \ Smax| are empty

(k−1)|Smax|−|S \ Smax| = δ(S)
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Proof:
◦ choose a set X⊂Smax of d−k+1 points

→ KX(Smax) : ≥ δ(S)+ log2 |Smax|
2(k−1)

−2cd−1 empty monochr. d-simplices
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Proof:
◦ choose a set X⊂Smax of d−k+1 points

→ KX(Smax) : ≥ δ(S)+ log2 |Smax|
2(k−1)

−2cd−1 empty monochr. d-simplices

◦
(|Smax|
d−k+1

)
many subsets X
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”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Proof:
◦ choose a set X⊂Smax of d−k+1 points

→ KX(Smax) : ≥ δ(S)+ log2 |Smax|
2(k−1)

−2cd−1 empty monochr. d-simplices

◦
(|Smax|
d−k+1

)
many subsets X

◦ over-count each d-simplex at most
(

d+1
d−k+1

)
times



21-13

P 23629–N18
Graz University of Technology
Institute for Software Technology

Thomas Hackl: Eurogiga Midterm Conference, July 9th – 13th, 2012

”Generalized Discrepancy Lemma”
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Proof:
◦ choose a set X⊂Smax of d−k+1 points

→ KX(Smax) : ≥ δ(S)+ log2 |Smax|
2(k−1)

−2cd−1 empty monochr. d-simplices

◦
(|Smax|
d−k+1

)
many subsets X

◦ over-count each d-simplex at most
(

d+1
d−k+1

)
times →

(|Smax|
d−k+1)
( d+1
d−k+1)
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Simple observation
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices
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Simple observation
• ”Generalized Discrepancy Lemma” (Lemma 19)

◦ k-colored set S ⊂ Rd of n points in general position

◦ d ≥ k > 3, n > k ·4d2(d+1)

⇒ S determines Ω
(
nd−k+1 · (δ(S) + log n)

)
empty

monochromatic d-simplices

• Corollary 26:

S determines Ω
(
nd−k+1 log n

)
empty monochromatic

d-simplices
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More discrepancy lemmata

empty monochr. d-simplices

Lemma 19 d ≥ k > 3 Ω
(
nd−k+1 · (δ(S) + log n)

)
Lemma 18 d = 2, k = 2

Lemma 20 d ≥ 3, k = 2

Lemma 21 d = 3, k = 3 Ω(nd−k+1 · δ(S))

Lemma 22 d > 4, k = 3

Lemma 23 d = 4, k = 3
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(d+1)-Colored Point Sets
• (d+1)-colored set S ⊂ Rd of n points in general position

◦ d > 2, n ≥ (d+1)·4d(cd+1)
cd = d3+d2+d
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(d+1)-Colored Point Sets

O. Devillers, F. Hurtado, G. Károly, and C. Seara.
Chromatic variants of the Erdős-Szekeres theorem on
points in convex position. 2003.

∃ arbitrarily large 3-colored point sets in R2 which do not
contain an empty monochromatic triangle

• (d+1)-colored set S ⊂ Rd of n points in general position

◦ d > 2, n ≥ (d+1)·4d(cd+1)
cd = d3+d2+d
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(d+1)-Colored Point Sets

• Recall Theorem 5:

◦ ∀ S⊂Rd of n points in general position

- d>2, n>4d2(d+1)

◦ ∃ triangulation of size at least dn+ log2(n)
2d − cd

• (d+1)-colored set S ⊂ Rd of n points in general position

◦ d > 2, n ≥ (d+1)·4d(cd+1)
cd = d3+d2+d
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(d+1)-Colored Point Sets
• (d+1)-colored set S ⊂ Rd of n points in general position

◦ d > 2, n ≥ (d+1)·4d(cd+1)
cd = d3+d2+d

• Apply Theorem 5 to Smax: |Smax| ≥
⌈

n
d+1

⌉
◦ ∃ triangulation of size at least

d|Smax|+ log2(|Smax|)
2d − cd
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(d+1)-Colored Point Sets
• (d+1)-colored set S ⊂ Rd of n points in general position

◦ d > 2, n ≥ (d+1)·4d(cd+1)
cd = d3+d2+d

• Apply Theorem 5 to Smax: |Smax| ≥
⌈

n
d+1

⌉
◦ ∃ triangulation of size at least

d|Smax|+ log2(|Smax|)
2d − cd

◦ at most d|Smax| points of remaining colors
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(d+1)-Colored Point Sets
• (d+1)-colored set S ⊂ Rd of n points in general position

◦ d > 2, n ≥ (d+1)·4d(cd+1)
cd = d3+d2+d

• Apply Theorem 5 to Smax: |Smax| ≥
⌈

n
d+1

⌉
◦ ∃ triangulation of size at least

d|Smax|+ log2(|Smax|)
2d − cd

◦ at most d|Smax| points of remaining colors

⇒ at least log2(|Smax|)
2d − cd ≥ 2d(cd+1)

2d − cd = 1

empty d-simplices
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(d+1)-Colored Point Sets
• Theorem 24:

◦ Every (d+1)-colored set S ⊂ Rd (d>2)

of n ≥ (d+1)·4d(cd+1) points in general position

determines an empty monochromatic d-simplex.
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(d+1)-Colored Point Sets
• Theorem 24:

◦ Every (d+1)-colored set S ⊂ Rd (d>2)

of n ≥ (d+1)·4d(cd+1) points in general position

determines an empty monochromatic d-simplex.
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(d+1)-Colored Point Sets
• Theorem 24:

◦ Every (d+1)-colored set S ⊂ Rd (d>2)

of n ≥ (d+1)·4d(cd+1) points in general position

determines an empty monochromatic d-simplex.

• Corollary 25:

◦ Every (d+1)-colored set of n points in general position

in Rd (d>2) determines at least a linear number of

empty monochromatic d-simplices.
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d-Colored Point Sets
• Theorem 27:

◦ ∀ d-colored sets S⊂Rd of n points in general position

- d>2, n≥f(d) f(d) constant w.r.t. n
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d-Colored Point Sets
• Theorem 27:

◦ ∀ d-colored sets S⊂Rd of n points in general position

- d>2, n≥f(d) f(d) constant w.r.t. n

◦ for each color 1≤j≤d, either:
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d-Colored Point Sets
• Theorem 27:

◦ ∀ d-colored sets S⊂Rd of n points in general position

- d>2, n≥f(d) f(d) constant w.r.t. n

◦ for each color 1≤j≤d, either:

- ∃ Ω
(
n1+2−d

)
empty monochromatic d-simplices

of color j
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d-Colored Point Sets
• Theorem 27:

◦ ∀ d-colored sets S⊂Rd of n points in general position

- d>2, n≥f(d) f(d) constant w.r.t. n

◦ for each color 1≤j≤d, either:

- ∃ Ω
(
n1+2−d

)
empty monochromatic d-simplices

of color j

or:

- ∃ convex set C⊂Rd, such that

|S∩C| = Θ(n) and δ(S∩C) = Ω(n2−d

)
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d-Colored → k-Colored
• Theorem 28:

◦ ∀ k-colored sets S⊂Rd of n points in general position

- d≥k>2, n≥f(d, k) f(d, k) constant w.r.t. n

◦ for each color 1≤j≤k, either:

- ∃ Ω
(
nd−k+1+2−d

)
empty monochromatic d-simplices

of color j

or:

- ∃ convex set C⊂Rd, such that

|S∩C| = Θ(n) and δ(S∩C) = Ω(n2−d

)
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Improvement
• Theorem 29:

◦ Every k-colored set in n points in general position in

Rd (d≥k≥3) determines Ω
(
nd−k+1+2−d

)
empty

monochromatic d-simplices.
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Improvement
• Theorem 29:

◦ Every k-colored set in n points in general position in

Rd (d≥k≥3) determines Ω
(
nd−k+1+2−d

)
empty

monochromatic d-simplices.

• Proof:
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Improvement
• Theorem 29:

◦ Every k-colored set in n points in general position in

Rd (d≥k≥3) determines Ω
(
nd−k+1+2−d

)
empty

monochromatic d-simplices.

• Proof:

◦ either: Ω
(
nd−k+1+2−d

)
EMS directly by Theorem 28
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Improvement
• Theorem 29:

◦ Every k-colored set in n points in general position in

Rd (d≥k≥3) determines Ω
(
nd−k+1+2−d

)
empty

monochromatic d-simplices.

• Proof:

◦ either: Ω
(
nd−k+1+2−d

)
EMS directly by Theorem 28

◦ or: by Theorem 28:

- ∃ convex set C⊂Rd: |S∩C|=Θ(n), δ(S∩C)=Ω(n2−d

)
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Improvement
• Theorem 29:

◦ Every k-colored set in n points in general position in

Rd (d≥k≥3) determines Ω
(
nd−k+1+2−d

)
empty

monochromatic d-simplices.

• Proof:

◦ either: Ω
(
nd−k+1+2−d

)
EMS directly by Theorem 28

◦ or: by Theorem 28:

- ∃ convex set C⊂Rd: |S∩C|=Θ(n), δ(S∩C)=Ω(n2−d

)

- and by discrepancy lemmata:

Ω
(
nd−k+1 · δ(S)

)
EMS
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2-Colored Point Sets
• similar to the case d ≥ k > 2

• Theorem 33:

◦ Every 2-colored set of n points in general position

in Rd (d≥2) determines Ω
(
nd−

2/3
)

empty monochromatic d-simplices.
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Conclusion
• ∀ sets S⊂Rd of n points, h = |CH(S)∩S|
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Conclusion
• ∀ sets S⊂Rd of n points, h = |CH(S)∩S|

• ∃ triangulation of size at least

dn+max
{
h, log2(n)

2d

}
− cd
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Conclusion
• ∀ sets S⊂Rd of n points, h = |CH(S)∩S|

• ∃ triangulation of size at least

dn+max
{
h, log2(n)

2d

}
− cd

• # empty monochromatic d-simplicies if S is k-colored
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Conclusion
• ∀ sets S⊂Rd of n points, h = |CH(S)∩S|

• ∃ triangulation of size at least

dn+max
{
h, log2(n)

2d

}
− cd

• # empty monochromatic d-simplicies if S is k-colored

colors d ≥ 3

k = 2 Ω(nd−2/3)
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Conclusion
• ∀ sets S⊂Rd of n points, h = |CH(S)∩S|

• ∃ triangulation of size at least

dn+max
{
h, log2(n)

2d

}
− cd

• # empty monochromatic d-simplicies if S is k-colored

colors d ≥ 3

k = 2 Ω(nd−2/3)

3 ≤ k ≤ d Ω(nd−k+1+2−d

)
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Conclusion
• ∀ sets S⊂Rd of n points, h = |CH(S)∩S|

• ∃ triangulation of size at least

dn+max
{
h, log2(n)

2d

}
− cd

• # empty monochromatic d-simplicies if S is k-colored

colors d ≥ 3

k = 2 Ω(nd−2/3)

3 ≤ k ≤ d Ω(nd−k+1+2−d

)

k = d+ 1 Ω(n)
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Conclusion
• ∀ sets S⊂Rd of n points, h = |CH(S)∩S|

• ∃ triangulation of size at least

dn+max
{
h, log2(n)

2d

}
− cd

• # empty monochromatic d-simplicies if S is k-colored

colors d ≥ 3

k = 2 Ω(nd−2/3)

3 ≤ k ≤ d Ω(nd−k+1+2−d

)

k = d+ 1 Ω(n)

k ≥ d+ 2 unknown
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Thank you for your attention !


