Lower bounds for the number of small convex k-holes

Oswin Aichholzer ${ }^{1}$, Ruy Fabila-Monroy ${ }^{2}$, Thomas Hackl ${ }^{1}$, Clemens Huemer ${ }^{3}$, Alexander Pilz ${ }^{1}$, and Birgit Vogtenhuber ${ }^{1}$

[^0]
Definition

- sets S of n points in \mathbb{R}^{2} in general position
- convex k-hole P :
- P is a convex polygon spanned by exactly k points of S and no other point of S is contained in P
- $\partial \mathrm{CH}(S)$... boundary of the convex hull $\mathrm{CH}(S)$ of S
- $\operatorname{ld}(x)=\frac{\log x}{\log 2} \ldots$ binary logarithm or logarithmus dualis

Introduction

- classical existence question by Erdős:
- What is the smallest integer $h(k)$ such that any set of $h(k)$ points in \mathbb{R}^{2} contains at least one convex k-hole?
- Answers:
- $k=4$: E. Klein: $h(4)=5$
- $k=5:$ H. Harborth: $h(5)=10$
$\circ k=6$: T. Gerken and C. Nicolás: $h(6)=$ finite
$\circ k=7$: J. Horton: \exists arbitrary large sets without convex 7 -holes

Introcuction

- generalization of Erdős' question:
- What is the least number $h_{k}(n)$ of convex k-holes determined by any set of n points in \mathbb{R}^{2} ?
- $h_{k}(n)=\min _{|S|=n}\left\{h_{k}(S)\right\}$; we consider $3 \leq k \leq 5$

Introcuction

- generalization of Erdős' question:
- What is the least number $h_{k}(n)$ of convex k-holes determined by any set of n points in \mathbb{R}^{2} ?
- $h_{k}(n)=\min _{|S|=n}\left\{h_{k}(S)\right\}$; we consider $3 \leq k \leq 5$
- $h_{5}(n) \geq \frac{n}{2}-O(1)$ [Valtr]
- $h_{3}(n) \geq n^{2}-\frac{37 n}{8}+\frac{23}{8}$ [García]
- $h_{4}(n) \geq \frac{n^{2}}{2}-\frac{11 n}{4}-\frac{9}{4}$ [García]

Introduction

- generalization of Erdős' question:
- What is the least number $h_{k}(n)$ of convex k-holes determined by any set of n points in \mathbb{R}^{2} ?
- $h_{k}(n)=\min _{|S|=n}\left\{h_{k}(S)\right\}$; we consider $3 \leq k \leq 5$
- $h_{5}(n) \geq \frac{n}{2}-O(1)[$ Valtr $] \longrightarrow h_{5}(n) \geq \frac{3 n}{4}-o(n)$
- $h_{3}(n) \geq n^{2}-\frac{37 n}{8}+\frac{23}{8}$ [García]

$$
\longrightarrow h_{3}(n) \geq n^{2}-\frac{32 n}{7}+\frac{22}{7}
$$

- $h_{4}(n) \geq \frac{n^{2}}{2}-\frac{11 n}{4}-\frac{9}{4}$ [García]

$$
\longrightarrow h_{4}(n) \geq \frac{n^{2}}{2}-\frac{9 n}{4}-o(n)
$$

Convex 5-holes

- Bárány and Valtr, 2004: $h_{5}(n) \leq 1.0207 n^{2}+o\left(n^{2}\right)$
- Valtr, 2012: $h_{5}(n) \geq \frac{n}{2}-O(1) \rightarrow h_{5}(n) \geq \frac{3}{4} n-o(n)$
- for small n :

Harborth, 1978
Dehnhardt, 1987

n	≤ 9	10	11	12	13	14	15	16	17
$h_{5}(n)$	0	1	2	3	3.	4	3.	6	3.

Aichholzer, H., and Vogtenhuber, 2012

Convex 5-holes

- Bárány and Valtr, 2004: $h_{5}(n) \leq 1.0207 n^{2}+o\left(n^{2}\right)$
- Valtr, 2012: $h_{5}(n) \geq \frac{n}{2}-O(1) \rightarrow h_{5}(n) \geq \frac{3}{4} n-o(n)$
- for small n :

Harborth, 1978
Dehnhardt, 1987

n	≤ 9	10	11	12	13	14	15	16	17
$h_{5}(n)$	0	1	2	3	3.4	3.6	3.9	≥ 3	≥ 3

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 1/2: $\exists p \in(S \cap \partial \mathrm{CH}(S))$, p vertex of a convex 5 -hole $h_{5}(S) \geq 1+h_{5}(S \backslash\{p\}) \geq 1+h_{5}(n-1)$

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 2/2: $\forall p \in(S \cap \partial \mathrm{CH}(S))$: p is not a vertex of a convex 5 -hole

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:
Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 2/2: $\forall p \in(S \cap \partial \mathrm{CH}(S))$: p is not a vertex of a convex 5 -hole

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:
Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5-holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 2/2: $\forall p \in(S \cap \partial \mathrm{CH}(S))$: p is not a vertex of a convex 5 -hole

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:
Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5-holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 2/2: $\forall p \in(S \cap \partial \mathrm{CH}(S))$: p is not a vertex of a convex 5 -hole

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:
Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5-holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 2/2: $\forall p \in(S \cap \partial \mathrm{CH}(S))$: p is not a vertex of a convex 5 -hole

$$
\begin{aligned}
& n=1+7+4+7(n \\
& h_{5}(S)=? \\
& \quad \geq 3+3(m-1)
\end{aligned}
$$

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:
Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5-holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 2/2: $\forall p \in(S \cap \partial \mathrm{CH}(S)): p$ is not a vertex of a convex 5 -hole

$$
n=1+7+4+7(m-1)+t+4
$$

$$
h_{5}(S)=?
$$

$$
\geq 3+3(m-1)+t
$$

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

- $m=1, t=1: n=7 \cdot 1+9+1=17 ; \ldots$

n	17	18	$19 . .23$	24	25	$26 . .30$	31	32	$33 . .37$	38
$h_{5}(n)$	≥ 4	≥ 5	≥ 6	≥ 7	≥ 8	≥ 9	≥ 10	≥ 11	≥ 12	≥ 13

P 23629-N18

$h_{5}(n)$: Improvement for large n

$h_{5}(n)$: Improvement for large n

P 23629-N18

$h_{5}(n)$: Improvement for large n

P 23629-N18

$h_{5}(n)$: Improvement for large n

$c . . . \#$ convex 5 -holes intersected by ℓ : $h_{5}(S)=h_{5}\left(S_{L}\right)+h_{5}\left(S_{R}\right)+c$
$\left|S^{\prime}\right|=12,\left|S^{\prime} \cap S_{L}\right|=8,\left|S^{\prime} \cap S_{R}\right|=4$
$\ell^{\prime \prime} \| \ell^{\prime},\left|S^{\prime \prime} \cap S_{L}\right|=4$

- at least 3 convex 5 -holes in S^{\prime}
- either, at least one intersects $\ell \rightarrow c_{L}$
- or, all convex 5 -holes are completely in $S^{\prime} \cap S_{L}$

P 23629-N18

$h_{5}(n)$: Improvement for large n

$c . . . \#$ convex 5 -holes intersected by ℓ :

$$
h_{5}(S)=h_{5}\left(S_{L}\right)+h_{5}\left(S_{R}\right)+c
$$

$$
\left|S^{\prime}\right|=12,\left|S^{\prime} \cap S_{L}\right|=8,\left|S^{\prime} \cap S_{R}\right|=4
$$

$$
\ell^{\prime \prime} \| \ell^{\prime},\left|S^{\prime \prime} \cap S_{L}\right|=4
$$

at least 3 convex 5 -holes in S^{\prime}

- either, at least one intersects $\ell \rightarrow c_{L}$
- or, all convex 5 -holes are completely in $S^{\prime} \cap S_{L}$

$$
h_{5}(S) \geq 3 \cdot\left(\left\lfloor\frac{1}{4} \cdot\left(\left\lceil\frac{n}{2}\right\rceil-8 c_{L}\right)\right\rfloor-1\right)
$$

P 23629-N18

$h_{5}(n)$: Improvement for large n

P 23629-N18

$h_{5}(n)$: Improvement for large n

P 23629-N18

$$
h_{5}(n) \text { : Improvement for large } n
$$

P 23629-N18

$h_{5}(n)$: Improvement for large n

$h_{5}(n)$: Improvement for large n

$h_{5}(n)$: Improvement for large n

P 23629-N18

$h_{5}(n)$: Improvement for large n

$h_{5}(n)$: Improvement for large n

Every set S of $n \geq 12$ points in the plane

 in general position contains at least$$
h_{5}(n) \geq \frac{3 n}{4}-n^{\operatorname{ld} \frac{11}{6}}+\frac{15}{8}=\frac{3 n}{4}-o(n)
$$

convex 5-holes.

Empty triangles and convex 4-holes

- Bárány and Valtr, 2004: $h_{3}(n) \leq 1.6196 n^{2}+o\left(n^{2}\right)$

$$
h_{4}(n) \leq 1.9396 n^{2}+o\left(n^{2}\right)
$$

- García, 2012: $h_{3}(S)=n^{2}-5 n+H+4+h_{3 \mid 5}(S)$

$$
h_{4}(S)=\frac{n^{2}}{2}-\frac{7 n}{2}+H+3+h_{4 \mid 5}(S)
$$

$H=|S \cap \partial \mathrm{CH}(S)|$
$h_{3 \mid 5}(S) \ldots$ \# of empty triangles generated by convex 5 -holes $h_{4 \mid 5}(S) \ldots$ \# of convex 4 -holes generated by convex 5 -holes

\triangle / \diamond generated by \checkmark

- Set S of n points in general position in the plane
- and an arbitrary but fixed sort order on S (e.g.: along a line, around an extremal point)

Multiple generation

Let $\triangle(\diamond)$ be an empty triangle (a convex 4-hole) of S.

> If $\triangle(\diamond)$ is generated by at least two different convex 5-holes of S, then there exists at least one convex 6-hole of S, containing $\triangle(\diamond)$.

$$
h_{3 \mid 5}\left(S_{\square}\right) \text { and } h_{4 \mid 5}\left(S_{\square}\right)
$$

Let \square be a convex 6 -hole of S, and $S_{\square}=S \cap \square$.

$$
h_{3 \mid 5}\left(S_{\square}\right)=4 \text { and } h_{4 \mid 5}\left(S_{\square}\right)=9
$$

Recall: $h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$

$$
\begin{array}{|l}
h_{3 \mid 5}(10)=1, h_{3 \mid 5}(11)=2, \text { and } h_{3 \mid 5}(12)=3 \\
h_{4 \mid 5}(10)=2, h_{4 \mid 5}(11)=4, \text { and } h_{4 \mid 5}(12)=6
\end{array}
$$

$h_{3 \mid 5}(n)$ and $h_{4 \mid 5}(n)$ for small n

Recall: if $m \geq 0$ is a natural number and $t \in\{1,2,3\}$, then:
Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5-holes.

Case 1/2: Case 2/2:

$h_{3}(n)$ improvement

If $m \geq 0$ is a natural number and $t \in\{1,2,3\}$, then:
Every set S of $n=7 \cdot m+9+t$ points in the plane in general position:

$$
\begin{aligned}
& h_{3 \mid 5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7} \\
& h_{4 \mid 5}(n) \geq 2 \cdot(3 m+t)=2 \cdot \frac{3 n-27+4 t}{7}
\end{aligned}
$$

$h_{3}(n)$ improvement

If $m \geq 0$ is a natural number and $t \in\{1,2,3\}$, then:
Every set S of $n=7 \cdot m+9+t$ points in the plane in general position:

$$
\begin{aligned}
& h_{3 \mid 5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7} \\
& h_{4 \mid 5}(n) \geq 2 \cdot(3 m+t)=2 \cdot \frac{3 n-27+4 t}{7}
\end{aligned}
$$

Every set S of $n \geq 12$ points (H extremal) in the plane in general position:

$$
\begin{gathered}
h_{3}(S) \geq n^{2}-5 n+H+4+\left\lceil\frac{3 n-27}{7}\right\rceil \\
h_{3}(n) \geq n^{2}-\frac{32 n}{7}+\frac{22}{7} \\
\hline
\end{gathered}
$$

Recall $h_{5}(n)$ for large n

- if one convex 5 -hole intersects ℓ, then at least one "generated" convex 4-hole intersects ℓ
- if all convex 5 -holes are completely in $S^{\prime} \cap S_{L}$, then all "generated" convex 4 -holes are completely in $S^{\prime} \cap S_{L}$

Recall $h_{5}(n)$ for large n

$h_{4}(n)$ improvement

$$
\begin{aligned}
& \text { Every set } S \text { of } n \geq 12 \text { points }(H \text { extremal }) \\
& \text { in the plane in general position: } \\
& h_{4}(S) \geq \frac{n^{2}}{2}-\frac{9 n}{4}-\frac{383}{303} \cdot n^{\operatorname{ld} \frac{19}{10}}+H+\frac{127}{24} \\
& h_{4}(n) \geq \frac{n^{2}}{2}-\frac{9 n}{4}-1.2641 n^{0.926}+\frac{199}{24} \\
& \quad=\frac{n^{2}}{2}-\frac{9 n}{4}-o(n) \\
& \hline
\end{aligned}
$$

P 23629-N18

Conciusion

- Convex 5-holes

\circ| n | 10 | 11 | 12 | $13 . .16$ | 17 | 18 | $19 . .23$ | 24 | 25 | $26 . .30$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h_{5}(n)$ | 1 | 2 | 3 | ≥ 3 | ≥ 4 | ≥ 5 | ≥ 6 | ≥ 7 | ≥ 8 | ≥ 9 |

- $h_{5}(n) \geq \frac{3 n}{4}-o(n)$

P 23629-N18

Conciusion

- Convex 5 -holes

n	10	11	12	$13 . .16$	17	18	$19 . .23$	24	25	$26 . .30$
$h_{5}(n)$	1	2	3	≥ 3	≥ 4	≥ 5	≥ 6	≥ 7	≥ 8	≥ 9

- $h_{5}(n) \geq \frac{3 n}{4}-o(n)$
- empty triangles and convex 4 -holes
- $h_{3}(n) \geq n^{2}-\frac{32 n}{7}+\frac{22}{7}$
- $h_{4}(n) \geq \frac{n^{2}}{2}-\frac{9 n}{4}-o(n)$

Conciusion

Convex 5-holes

n	10	11	12	$13 . .16$	17	18	$19 . .23$	24	25	$26 . .30$
$h_{5}(n)$	1	2	3	≥ 3	≥ 4	≥ 5	≥ 6	≥ 7	≥ 8	≥ 9

- $h_{5}(n) \geq \frac{3 n}{4}-o(n)$
- empty triangles and convex 4-holes
- $h_{3}(n) \geq n^{2}-\frac{32 n}{7}+\frac{22}{7}$
- $h_{4}(n) \geq \frac{n^{2}}{2}-\frac{9 n}{4}-o(n)$
- Open questions / future work
¿ $h_{5}(n)$: super-linear, maybe even quadratic lower bound?
¿ $\exists c>1, h_{3}(n) \geq c \cdot n^{2}-o\left(n^{2}\right)$?

Institute for Software Technology

Thank you for your attention!

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

$$
\begin{aligned}
& \text { Every set } S \text { of } n=7 \cdot m+9+t \text { points in } \\
& \text { the plane in general position contains at least } \\
& h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7} \text { convex } 5 \text {-holes. }
\end{aligned}
$$

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 1/2: $\exists p \in(S \cap \partial \mathrm{CH}(S))$, p vertex of a convex 5 -hole $h_{5}(S) \geq 1+h_{5}(S \backslash\{p\}) \geq 1+h_{5}(n-1)$

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 1/2: $\exists p \in(S \cap \partial \mathrm{CH}(S))$, p vertex of a convex 5 -hole $h_{5}(S) \geq 1+h_{5}(S \backslash\{p\}) \geq 1+h_{5}(n-1)$
$n-1=7 m+9+t-1$
for $t=\{2,3\} \rightarrow t-1=\{1,2\}$
$\xrightarrow{\text { induction }} 1+h_{5}(n-1) \geq 1+3 m+t-1$

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 1/2: $\exists p \in(S \cap \partial \mathrm{CH}(S))$, p vertex of a convex 5 -hole $h_{5}(S) \geq 1+h_{5}(S \backslash\{p\}) \geq 1+h_{5}(n-1)$
$n-1=7 m+9+t-1$
for $t=1 \rightarrow t-1=0$!

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 1/2: $\exists p \in(S \cap \partial \mathrm{CH}(S))$, p vertex of a convex 5 -hole $h_{5}(S) \geq 1+h_{5}(S \backslash\{p\}) \geq 1+h_{5}(n-1)$
$t=1: n-1=7 m+9+t-1=7 m+9=7(m-1)+9+7$

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 1/2: $\exists p \in(S \cap \partial \mathrm{CH}(S))$, p vertex of a convex 5 -hole
$h_{5}(S) \geq 1+h_{5}(S \backslash\{p\}) \geq 1+h_{5}(n-1) \geq 1+h_{5}(n-5)$
$t=1: n-1=7 m+9+t-1=7 m+9=7(m-1)+9+7$

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:
Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 1/2: $\exists p \in(S \cap \partial \mathrm{CH}(S))$, p vertex of a convex 5 -hole $h_{5}(S) \geq 1+h_{5}(S \backslash\{p\}) \geq 1+h_{5}(n-1) \geq 1+h_{5}(n-5)$ $t=1: n-1=7 m+9+t-1=7 m+9=7(m-1)+9+7$ $n-5=7(m-1)+9+3$

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> | Every set S of $n=7 \cdot m+9+t$ points in |
| :--- |
| the plane in general position contains at least |
| $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5-holes. |

Base case, $m=0: h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$.
Case 1/2: $\exists p \in(S \cap \partial \mathrm{CH}(S))$, p vertex of a convex 5 -hole $h_{5}(S) \geq 1+h_{5}(S \backslash\{p\}) \geq 1+h_{5}(n-1) \geq 1+h_{5}(n-5)$ $t=1: n-1=7 m+9+t-1=7 m+9=7(m-1)+9+7$

$$
n-5=7(m-1)+9+3
$$

$\xrightarrow{\text { induction }} 1+h_{5}(n-5) \geq 1+3(m-1)+3=3 m+1$

$h_{5}(n)$: Improvement for small n

Let $m \geq 0$ be a natural number and $t \in\{1,2,3\}$:

> Every set S of $n=7 \cdot m+9+t$ points in the plane in general position contains at least $h_{5}(n) \geq 3 m+t=\frac{3 n-27+4 t}{7}$ convex 5 -holes.

Corollary for $n=7 \cdot 1+9+1=17$ points:
Every set S of $n=17$ points in the plane in general position contains at least $h_{5}(n) \geq 4$ convex 5-holes.

Multiple generation

Let $\triangle(\diamond)$ be an empty triangle (a convex 4-hole) of S. | If $\triangle(\diamond)$ is generated by at least two different |
| :--- |
| convex 5-holes of S, then there exists at least |
| one convex 6 -hole of S, containing $\triangle(\diamond)$. |

Multiple generation

Let $\triangle(\diamond)$ be an empty triangle (a convex 4-hole) of S.

> | If $\triangle(\diamond)$ is generated by at least two different |
| :--- |
| convex 5-holes of S, then there exists at least |
| one convex 6 -hole of S, containing $\triangle(\diamond)$. |

Multiple generation

Let $\triangle(\diamond)$ be an empty triangle (a convex 4-hole) of S.

> | If $\triangle(\diamond)$ is generated by at least two different |
| :--- |
| convex 5-holes of S, then there exists at least |
| one convex 6 -hole of S, containing $\triangle(\diamond)$. |

Multiple generation

Let $\triangle(\diamond)$ be an empty triangle (a convex 4-hole) of S.
If $\triangle(\diamond)$ is generated by at least two different convex 5 -holes of S, then there exists at least one convex 6 -hole of S, containing $\triangle(\diamond)$.

Multiple generation

Let $\triangle(\diamond)$ be an empty triangle (a convex 4-hole) of S.

> | If $\triangle(\diamond)$ is generated by at least two different |
| :--- |
| convex 5-holes of S, then there exists at least |
| one convex 6 -hole of S, containing $\triangle(\diamond)$. |

P 23629-N18

$$
h_{3 \mid 5}\left(S_{\square}\right) \text { and } h_{4 \mid 5}\left(S_{\square}\right)
$$

Let \square be a convex 6 -hole of S, and $S_{\square}=S \cap \square$.

$$
h_{3 \mid 5}\left(S_{\square}\right)=4 \text { and } h_{4 \mid 5}\left(S_{\square}\right)=9
$$

P 23629-N18

$$
h_{3 \mid 5}\left(S^{S}\right) \text { and } h_{4 \mid 5}\left(S^{\prime}\right)
$$

Let \square be a convex 6 -hole of S, and $S_{\square}=S \cap \square$.

$$
h_{3 \mid 5}\left(S_{\square}\right)=4 \text { and } h_{4 \mid 5}\left(S_{\square}\right)=9
$$

$$
n=6 \text { and } H=6:
$$

$$
h_{3}\left(S_{\square}\right)=n^{2}-5 n+H+4+h_{3 \mid 5}\left(S_{\square}\right)=16+h_{3 \mid 5}\left(S_{\square}\right) \text { and }
$$

$$
h_{4}\left(S_{\square}\right)=\frac{n^{2}}{2}-\frac{7 n}{2}+H+3+h_{4 \mid 5}\left(S_{\square}\right)=6+h_{4 \mid 5}\left(S_{\square}\right)
$$

P 23629-N18

$$
h_{3 \mid 5}\left(S_{\square}\right) \text { and } h_{4 \mid 5}\left(S_{\square}\right)
$$

Let \square be a convex 6 -hole of S, and $S_{\square}=S \cap \square$.

$$
h_{3 \mid 5}\left(S_{\square}\right)=4 \text { and } h_{4 \mid 5}\left(S_{\square}\right)=9
$$

$$
n=6 \text { and } H=6:
$$

$$
h_{3}\left(S_{\square}\right)=n^{2}-5 n+H+4+h_{3 \mid 5}\left(S_{\square}\right)=16+h_{3 \mid 5}\left(S_{\square}\right) \text { and }
$$

$$
h_{4}\left(S_{\square}\right)=\frac{n^{2}}{2}-\frac{7 n}{2}+H+3+h_{4 \mid 5}\left(S_{\square}\right)=6+h_{4 \mid 5}\left(S_{\square}\right)
$$

For S in convex position: $h_{k}(S)=\binom{n}{k}$, thus

$$
h_{3 \mid 5}\left(S_{\square}\right)=\binom{6}{3}-16=4 \text { and } h_{4 \mid 5}\left(S_{\square}\right)=\binom{6}{4}-6=9
$$

$$
h_{3 \mid 5}\left(S_{\square}\right) \text { and } h_{4 \mid 5}\left(S_{\square}\right)
$$

Let \square be a convex 6 -hole of S, and $S_{\square}=S \cap \square$.

$$
h_{3 \mid 5}\left(S_{\square}\right)=4 \text { and } h_{4 \mid 5}\left(S_{\square}\right)=9
$$

Recall: $h_{5}(10)=1, h_{5}(11)=2$, and $h_{5}(12)=3$

$$
\begin{array}{|l|}
\hline h_{3 \mid 5}(10)=1, h_{3 \mid 5}(11)=2, \text { and } h_{3 \mid 5}(12)=3 \\
h_{4 \mid 5}(10)=2, h_{4 \mid 5}(11)=4, \text { and } h_{4 \mid 5}(12)=6
\end{array}
$$

$h_{3 \mid 5}(n)$ and $h_{4 \mid 5}(n)$ for small n
Case $1 / 2$:

$h_{3 \mid 5}(n)$ and $h_{4 \mid 5}(n)$ for small n
Case $1 / 2$:

$h_{3 \mid 5}(n)$ and $h_{4 \mid 5}(n)$ for small n
Case $1 / 2$:

$h_{3 \mid 5}(n)$ and $h_{4 \mid 5}(n)$ for small n
Case $1 / 2$:

$$
h_{3 \mid 5}(n) \text { and } h_{4 \mid 5}(n) \text { for small } n
$$

Case $2 / 2$:

$$
h_{3 \mid 5}(n) \text { and } h_{4 \mid 5}(n) \text { for small } n
$$

Case 2/2:

[^0]: ${ }^{1}$ Institute for Software Technology, Graz University of Technology
 ${ }^{2}$ Departamento de Matemáticas, Cinvestav, Mexico City, Mexico
 ${ }^{3}$ Departament de Matemàtica Aplicada IV, UPC, Barcelona, Spain

