

Lower bounds for the number of small convex k-holes

Oswin Aichholzer¹, Ruy Fabila-Monroy², <u>Thomas Hackl¹</u>, Clemens Huemer³, Alexander Pilz¹, and Birgit Vogtenhuber¹

¹ Institute for Software Technology, Graz University of Technology
 ² Departamento de Matemáticas, Cinvestav, Mexico City, Mexico
 ³ Departament de Matemàtica Aplicada IV, UPC, Barcelona, Spain

Definition

- sets S of n points in \mathbb{R}^2 in general position
- convex k-hole P:
 - $\circ~P$ is a convex polygon spanned by exactly k points of S and no other point of S is contained in P

- $\partial \operatorname{CH}(S)$... boundary of the convex hull $\operatorname{CH}(S)$ of S
- $ld(x) = \frac{\log x}{\log 2} \dots$ binary logarithm or logarithmus dualis

- classical existence question by Erdős:
 - What is the smallest integer h(k) such that any set of h(k) points in \mathbb{R}^2 contains at least one convex k-hole?
- Answers:
 - k = 4: E. Klein: h(4) = 5
 - k = 5: H. Harborth: h(5) = 10
 - k = 6: T. Gerken and C. Nicolás: h(6) = finite
 - k = 7: J. Horton: \exists arbitrary large sets without convex 7-holes

- generalization of Erdős' question:
 - What is the least number $h_k(n)$ of convex k-holes determined by any set of n points in \mathbb{R}^2 ?
- $h_k(n) = \min_{|S|=n} \{h_k(S)\}$; we consider $3 \le k \le 5$

- generalization of Erdős' question:
 - What is the least number $h_k(n)$ of convex k-holes determined by any set of n points in \mathbb{R}^2 ?
- $h_k(n) = \min_{|S|=n} \{h_k(S)\}$; we consider $3 \le k \le 5$

•
$$h_5(n) \ge \frac{n}{2} - O(1)$$
 [Valtr]

•
$$h_3(n) \ge n^2 - \frac{37n}{8} + \frac{23}{8}$$
 [García]

•
$$h_4(n) \ge \frac{n^2}{2} - \frac{11n}{4} - \frac{9}{4}$$
 [García]

- generalization of Erdős' question:
 - What is the least number $h_k(n)$ of convex k-holes determined by any set of n points in \mathbb{R}^2 ?
- $h_k(n) = \min_{|S|=n} \{h_k(S)\}$; we consider $3 \le k \le 5$

•
$$h_5(n) \ge \frac{n}{2} - O(1)$$
 [Valtr] $\longrightarrow h_5(n) \ge \frac{3n}{4} - o(n)$

•
$$h_3(n) \ge n^2 - \frac{37n}{8} + \frac{23}{8}$$
 [García]
 $\longrightarrow h_3(n) \ge n^2 - \frac{32n}{7} + \frac{22}{7}$
• $h_4(n) \ge \frac{n^2}{2} - \frac{11n}{4} - \frac{9}{4}$ [García]
 $\longrightarrow h_4(n) \ge \frac{n^2}{2} - \frac{9n}{4} - o(n)$

Thomas Hackl: 24^{th} Canadian Conference on Computational Geometry, August $8^{th} - 10^{th}$, 2012

Convex 5-holes

- Bárány and Valtr, 2004: $h_5(n) \le 1.0207n^2 + o(n^2)$
- Valtr, 2012: $h_5(n) \ge \frac{n}{2} O(1) \longrightarrow h_5(n) \ge \frac{3}{4}n o(n)$
- for small n:

 $n \quad \| \le 9 \,|\, \mathbf{10} \,|\, \mathbf{11} \,|\, \mathbf{12} \,|\, \mathbf{13} \,|\, \mathbf{14} \,|\, \mathbf{15}$ 16 17 **16**1 $h_5(n)$ ، <u>ع</u> ' $\geq 3 \mid \geq 3$ 0 1 3.4 3.9 3.. Harborth, 1978 ≥ 3 ≤ 3 Dehnhardt, 1987 Aichholzer, H., and Vogtenhuber, 2012

Grazı

Convex 5-holes

- Bárány and Valtr, 2004: $h_5(n) \le 1.0207n^2 + o(n^2)$
- Valtr, 2012: $h_5(n) \ge \frac{n}{2} O(1) \longrightarrow h_5(n) \ge \frac{3}{4}n o(n)$
- for small n:

 $\| \le 9 \,|\, 10 \,|\, 11 \,|\, 12 \,|\,\, 13 \,|\,\, 14 \,|\,$ 15 16 17 $h_5(n)$. 3 ≥ 3 0 6 1 3.9 3. 4 3.. Harborth, 1978 ≥ 3 ≤ 3 Dehnhardt, 1987 Aichholzer, H., and Vogtenhuber, 2012

Grazı

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m = 0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 1/2: $\exists p \in (S \cap \partial \operatorname{CH}(S))$, p vertex of a convex 5-hole $h_5(S) \ge 1 + h_5(S \setminus \{p\}) \ge 1 + h_5(n-1)$

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 2/2: $\forall p \in (S \cap \partial \operatorname{CH}(S))$: p is not a vertex of a convex 5-hole

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 2/2: $\forall p \in (S \cap \partial \operatorname{CH}(S))$: p is not a vertex of a convex 5-hole

Thomas Hackl: 24^{th} Canadian Conference on Computational Geometry, August 8^{th} – 10^{th} , 2012

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 2/2: $\forall p \in (S \cap \partial \operatorname{CH}(S))$: p is not a vertex of a convex 5-hole

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 2/2: $\forall p \in (S \cap \partial \operatorname{CH}(S))$: p is not a vertex of a convex 5-hole

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 2/2: $\forall p \in (S \cap \partial \operatorname{CH}(S))$: p is not a vertex of a convex 5-hole

Thomas Hackl: 24^{th} Canadian Conference on Computational Geometry, August $8^{th} - 10^{th}$, 2012

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 2/2: $\forall p \in (S \cap \partial \operatorname{CH}(S))$: p is not a vertex of a convex 5-hole

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

•
$$m = 1$$
, $t = 1$: $n = 7 \cdot 1 + 9 + 1 = 17$; ...

n171819..23242526..30313233..3738 $h_5(n)$ ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 10 ≥ 11 ≥ 12 ≥ 13

$h_5(n)$: Improvement for large n

$h_5(n)$: Improvement for large n

P 23629-N18

P 23629–N18

Institute for Software Technology Graz University of Technology

 $h_5(n)$: Improvement for large n

 $h_5(n)$: Improvement for large n

C'

P 23629-N18

 $|S_L| = \lceil \frac{n}{2} \rceil \text{ and } |S_R| = \lfloor \frac{n}{2} \rfloor$ $c \dots \# \text{ convex 5-holes intersected by } \ell:$ $h_5(S) = h_5(S_L) + h_5(S_R) + c$ $|S'| = 12, |S' \cap S_L| = 8, |S' \cap S_R| = 4$ $\ell'' \parallel \ell', |S'' \cap S_L| = 4$

 $h_5(n)$: Improvement for large n

P 23629-N18

 $h_5(n)$: Improvement for large n

P 23629–N18

Thomas Hackl: 24^{th} Canadian Conference on Computational Geometry, August 8^{th} – 10^{th} , 2012

 $h_5(n)$: Improvement for large n

P 23629–N18

Thomas Hackl: 24^{th} Canadian Conference on Computational Geometry, August 8^{th} – 10^{th} , 2012

 $h_5(n)$: Improvement for large n

P 23629–N18

Thomas Hackl: 24^{th} Canadian Conference on Computational Geometry, August $8^{th} - 10^{th}$, 2012

 $h_5(n)$: Improvement for large n

P 23629–N18

Thomas Hackl: 24^{th} Canadian Conference on Computational Geometry, August 8^{th} – 10^{th} , 2012

 $h_5(n)$: Improvement for large n

P 23629–N18

9-10

 $h_5(n)$: Improvement for large n

 $h_5(n)$: Improvement for large n

Thomas Hackl: 24^{th} Canadian Conference on Computational Geometry, August 8^{th} – 10^{th} , 2012

 $h_5(n)$: Improvement for large n

Thomas Hackl: 24^{th} Canadian Conference on Computational Geometry, August 8^{th} – 10^{th} , 2012

$h_5(n)$: Improvement for large n

Every set S of $n \ge 12$ points in the plane in general position contains at least $h_5(n) \ge \frac{3n}{4} - n^{\operatorname{ld} \frac{11}{6}} + \frac{15}{8} = \frac{3n}{4} - o(n)$ convex 5-holes.

Empty triangles and convex 4-holes

• Bárány and Valtr, 2004: $h_3(n) \le 1.6196n^2 + o(n^2)$ $h_4(n) \le 1.9396n^2 + o(n^2)$

• García, 2012:
$$h_3(S) = n^2 - 5n + H + 4 + h_{3|5}(S)$$

 $h_4(S) = \frac{n^2}{2} - \frac{7n}{2} + H + 3 + h_{4|5}(S)$

 $H = |S \cap \partial \operatorname{CH}(S)|$

 $h_{3|5}(S) \dots \#$ of empty triangles generated by convex 5-holes $h_{4|5}(S) \dots \#$ of convex 4-holes generated by convex 5-holes

 \triangle / \diamondsuit generated by \triangle

- Set S of n points in general position in the plane
- and an arbitrary but fixed sort order on S (e.g.: along a line, around an extremal point)

Multiple generation

Let \triangle (\diamond) be an empty triangle (a convex 4-hole) of S.

If \triangle (\diamond) is generated by at least two different convex 5-holes of S, then there exists at least one convex 6-hole of S, containing \triangle (\diamond).

$$h_{3|5}(S_{\bigcirc})$$
 and $h_{4|5}(S_{\bigcirc})$

Let \bigcirc be a convex 6-hole of S, and $S_{\bigcirc} = S \cap \bigcirc$.

$$h_{3|5}(S_{\bigcirc}) = 4 \text{ and } h_{4|5}(S_{\bigcirc}) = 9$$

Recall:
$$h_5(10) = 1$$
, $h_5(11) = 2$, and $h_5(12) = 3$

$$h_{3|5}(10) = 1$$
, $h_{3|5}(11) = 2$, and $h_{3|5}(12) = 3$
 $h_{4|5}(10) = 2$, $h_{4|5}(11) = 4$, and $h_{4|5}(12) = 6$

$$h_{3|5}(n)$$
 and $h_{4|5}(n)$ for small n

Recall: if $m \ge 0$ is a natural number and $t \in \{1, 2, 3\}$, then:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Thomas Hackl: 24^{th} Canadian Conference on Computational Geometry, August $8^{th} - 10^{th}$, 2012

$$h_3(n)$$
 improvement

If $m \ge 0$ is a natural number and $t \in \{1, 2, 3\}$, then:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position: $h_{3|5}(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ $h_{4|5}(n) \ge 2 \cdot (3m + t) = 2 \cdot \frac{3n - 27 + 4t}{7}$

$$h_3(n)$$
 improvement

If $m \ge 0$ is a natural number and $t \in \{1, 2, 3\}$, then:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position: $h_{3|5}(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ $h_{4|5}(n) \ge 2 \cdot (3m + t) = 2 \cdot \frac{3n - 27 + 4t}{7}$

Every set S of $n \ge 12$ points (H extremal) in the plane in general position: $h_3(S) \ge n^2 - 5n + H + 4 + \left\lceil \frac{3n - 27}{7} \right\rceil$ $h_3(n) \ge n^2 - \frac{32n}{7} + \frac{22}{7}$

C'

 $|S_L| = \lceil \frac{n}{2} \rceil$ and $|S_R| = \lfloor \frac{n}{2} \rfloor$ $|S'| = 12, |S' \cap S_L| = 8, |S' \cap S_R| = 4$ $\ell'' \parallel \ell', |S'' \cap S_L| = 4$ $h_5(S') \ge 3 \rightarrow h_{4|5}(S') \ge 6$

- if one convex 5-hole intersects ℓ, then at least one "generated" convex 4-hole intersects ℓ
- if all convex 5-holes are completely in $S' \cap S_L$, then all "generated" convex 4-holes are completely in $S' \cap S_L$

C'

 $|S_L| = \lceil \frac{n}{2} \rceil$ and $|S_R| = \lfloor \frac{n}{2} \rfloor$ $|S'| = 12, |S' \cap S_L| = 8, |S' \cap S_R| = 4$ $\ell'' \parallel \ell', |S'' \cap S_L| = 4$ $h_5(S') \ge 3 \rightarrow h_{4|5}(S') \ge 6$

- if one convex 5-hole intersects ℓ, then at least one "generated" convex 4-hole intersects ℓ
- if all convex 5-holes are completely in S' ∩ S_L, then all "generated" convex 4-holes are completely in S' ∩ S_L
- ! in the latter case count only 5 "generated" convex 4-holes for S''

 $h_4(n)$ improvement

Every set *S* of
$$n \ge 12$$
 points (*H* extremal)
in the plane in general position:
 $h_4(S) \ge \frac{n^2}{2} - \frac{9n}{4} - \frac{383}{303} \cdot n^{\text{ld } \frac{19}{10}} + H + \frac{127}{24}$
 $h_4(n) \ge \frac{n^2}{2} - \frac{9n}{4} - 1.2641 \, n^{0.926} + \frac{199}{24}$
 $= \frac{n^2}{2} - \frac{9n}{4} - o(n)$

Conclusion

• Convex 5-holes

Conclusion

• Convex 5-holes

• empty triangles and convex 4-holes

•
$$h_3(n) \ge n^2 - \frac{32n}{7} + \frac{22}{7}$$

• $h_4(n) \ge \frac{n^2}{2} - \frac{9n}{4} - o(n)$

Conclusion

• Convex 5-holes

- empty triangles and convex 4-holes
 - $h_3(n) \ge n^2 \frac{32n}{7} + \frac{22}{7}$ • $h_4(n) \ge \frac{n^2}{2} - \frac{9n}{4} - o(n)$

Open questions / future work

¿ $h_5(n)$: super-linear, maybe even quadratic lower bound ?

$$\exists c > 1, h_3(n) \ge c \cdot n^2 - o(n^2)$$
 ?

Thank you for your attention!

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$.

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m = 0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 1/2: $\exists p \in (S \cap \partial \operatorname{CH}(S))$, p vertex of a convex 5-hole $h_5(S) \ge 1 + h_5(S \setminus \{p\}) \ge 1 + h_5(n-1)$

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m = 0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 1/2: $\exists p \in (S \cap \partial \operatorname{CH}(S))$, p vertex of a convex 5-hole $h_5(S) \ge 1 + h_5(S \setminus \{p\}) \ge 1 + h_5(n-1)$ n-1 = 7m + 9 + t - 1for $t = \{2,3\} \to t - 1 = \{1,2\}$ $\xrightarrow{\text{induction}} 1 + h_5(n-1) \ge 1 + 3m + t - 1$

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m = 0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 1/2: $\exists p \in (S \cap \partial \operatorname{CH}(S))$, p vertex of a convex 5-hole $h_5(S) \ge 1 + h_5(S \setminus \{p\}) \ge 1 + h_5(n-1)$ n-1 = 7m + 9 + t - 1

for $t = 1 \rightarrow t - 1 = 0$

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 1/2: $\exists p \in (S \cap \partial \operatorname{CH}(S))$, p vertex of a convex 5-hole $h_5(S) \ge 1 + h_5(S \setminus \{p\}) \ge 1 + h_5(n-1)$

 $t = 1: \ n-1 = 7m + 9 + t - 1 = 7m + 9 = 7(m-1) + 9 + 7$

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 1/2: $\exists p \in (S \cap \partial \operatorname{CH}(S))$, p vertex of a convex 5-hole $h_5(S) \ge 1 + h_5(S \setminus \{p\}) \ge 1 + h_5(n-1) \ge 1 + h_5(n-5)$

$$t=1: n-1 = 7m + 9 + t - 1 = 7m + 9 = 7(m-1) + 9 + 7$$

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 1/2: $\exists p \in (S \cap \partial \operatorname{CH}(S))$, p vertex of a convex 5-hole $h_5(S) \ge 1 + h_5(S \setminus \{p\}) \ge 1 + h_5(n-1) \ge 1 + h_5(n-5)$ t=1: n-1 = 7m + 9 + t - 1 = 7m + 9 = 7(m-1) + 9 + 7

$$n-1 = 7m + 9 + t - 1 = 7m + 9 = 7(m-1)$$
$$n-5 = 7(m-1) + 9 + 3$$

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Base case, m=0: $h_5(10) = 1$, $h_5(11) = 2$, and $h_5(12) = 3$. Case 1/2: $\exists p \in (S \cap \partial \operatorname{CH}(S))$, p vertex of a convex 5-hole $h_5(S) \ge 1 + h_5(S \setminus \{p\}) \ge 1 + h_5(n-1) \ge 1 + h_5(n-5)$

$$t = 1: \ n-1 = 7m + 9 + t - 1 = 7m + 9 = 7(m-1) + 9 + 7$$
$$n-5 = 7(m-1) + 9 + 3$$

indu

$$\xrightarrow{\text{duction}} 1 + h_5(n-5) \ge 1 + 3(m-1) + 3 = 3m+1$$

$h_5(n)$: Improvement for small n

Let $m \ge 0$ be a natural number and $t \in \{1, 2, 3\}$:

Every set S of $n = 7 \cdot m + 9 + t$ points in the plane in general position contains at least $h_5(n) \ge 3m + t = \frac{3n - 27 + 4t}{7}$ convex 5-holes.

Corollary for $n = 7 \cdot 1 + 9 + 1 = 17$ points:

Every set S of n = 17 points in the plane in general position contains at least $h_5(n) \ge 4$ convex 5-holes.

Let \triangle (\diamond) be an empty triangle (a convex 4-hole) of S.

Let \triangle (\diamond) be an empty triangle (a convex 4-hole) of S.

Let \triangle (\diamond) be an empty triangle (a convex 4-hole) of S.

Let \triangle (\diamond) be an empty triangle (a convex 4-hole) of S.

Let \triangle (\diamond) be an empty triangle (a convex 4-hole) of S.

 $h_{3|5}(S_{\bigcirc})$ and $h_{4|5}(S_{\bigcirc})$

$$h_{3|5}(S_{\bigcirc}) = 4 \text{ and } h_{4|5}(S_{\bigcirc}) = 9$$

$$h_{3|5}(S_{\bigcirc})$$
 and $h_{4|5}(S_{\bigcirc})$

$$h_{3|5}(S_{\bigcirc}) = 4 \text{ and } h_{4|5}(S_{\bigcirc}) = 9$$

n = 6 and H = 6: $h_3(S_{\bigcirc}) = n^2 - 5n + H + 4 + h_{3|5}(S_{\bigcirc}) = 16 + h_{3|5}(S_{\bigcirc}) \text{ and }$ $h_4(S_{\bigcirc}) = \frac{n^2}{2} - \frac{7n}{2} + H + 3 + h_{4|5}(S_{\bigcirc}) = 6 + h_{4|5}(S_{\bigcirc})$

$$h_{3|5}(S_{\bigcirc})$$
 and $h_{4|5}(S_{\bigcirc})$

$$h_{3|5}(S_{\bigcirc}) = 4 \text{ and } h_{4|5}(S_{\bigcirc}) = 9$$

$$n = 6 \text{ and } H = 6:$$

$$h_3(S_{\bigcirc}) = n^2 - 5n + H + 4 + h_{3|5}(S_{\bigcirc}) = 16 + h_{3|5}(S_{\bigcirc}) \text{ and }$$

$$h_4(S_{\bigcirc}) = \frac{n^2}{2} - \frac{7n}{2} + H + 3 + h_{4|5}(S_{\bigcirc}) = 6 + h_{4|5}(S_{\bigcirc})$$
For S in convex position: $h_k(S) = \binom{n}{k}$, thus
$$h_{3|5}(S_{\bigcirc}) = \binom{6}{3} - 16 = 4 \text{ and } h_{4|5}(S_{\bigcirc}) = \binom{6}{4} - 6 = 9$$

$$h_{3|5}(S_{\bigcirc})$$
 and $h_{4|5}(S_{\bigcirc})$

$$h_{3|5}(S_{\bigcirc}) = 4 \text{ and } h_{4|5}(S_{\bigcirc}) = 9$$

Recall:
$$h_5(10) = 1$$
, $h_5(11) = 2$, and $h_5(12) = 3$

$$h_{3|5}(10) = 1$$
, $h_{3|5}(11) = 2$, and $h_{3|5}(12) = 3$
 $h_{4|5}(10) = 2$, $h_{4|5}(11) = 4$, and $h_{4|5}(12) = 6$

$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Case 1/2:

$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Case 1/2:

$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Case 1/2:

$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Case 1/2:

$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Case 2/2:

$h_{3|5}(n)$ and $h_{4|5}(n)$ for small n

Case 2/2:

