gnuplot 4.6

An Interactive Plotting Program

Thomas Williams & Colin Kelley
Version 4.6 organized by: Hans-Bernhard Broker, Ethan A Merritt, and others

Major contributors (alphabetic order):
Hans-Bernhard Broker, John Campbell,
Robert Cunningham, David Denholm,
Gershon Elber, Roger Fearick,

Carsten Grammes, Lucas Hart,

Lars Hecking, Péter Juhasz,

Thomas Koenig, David Kotz,

Ed Kubaitis, Russell Lang,

Timothée Lecomte, Alexander Lehmann,
Alexander Mai, Bastian Markisch,

Ethan A Merritt, Petr Mikulik,

Carsten Steger, Shigeharu Takeno,

Tom Tkacik, Jos Van der Woude,

James R. Van Zandt, Alex Woo, Johannes Zellner
Copyright (©) 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley
Copyright (©) 2004 - 2012 various authors

Mailing list for comments: gnuplot-info@lists.sourceforge.net
Mailing list for bug reports: gnuplot-bugs@lists.sourceforge.net
Web access (preferred): http://sourceforge.net/projects/gnuplot

This manual was originally prepared by Dick Crawford.
2012 Version 4.6

2 |gnup10t 4.6 | CONTENTS

Contents

16
Copyright| 16
Mntroductionl 16
|[Seeking-assistance] 17
New features 18
... 18
|[Local customization of linetypes| e 19
... 19
[Revised polar axes| L 19
INew smoothing algorithms| 19
[New time/date handling] L 19
[Statistical summary of data]o o 19
INew or revised terminal driversl L 19
[Backwards compatibility| 20
[Batch/Interactive Operation| 20
|Canvas size 21
[Command-line-editing] 21
22
22
D g 23
(Enhanced text mode] 23
[Environment] 24
25
FUncHong - -« ¢ o oo 26
[Elliptic integrals|o 27
[Random number generator| Lo L 27

Walid . . . o o oo o 28
Operators] e e e e 28
... 28

Binary]. e e e 28

CONTENTS |gnup10t 4.6 | 3
DUmMmMAationl e e e e e 30
|Gnuplot-defined variables| oL 30
[User-defined variables and functionsl 30

[Fonts| 31
|Cairo (pdfcairo, pngcairo, epscairo, wxt terminals)| oo oL L 31
|Gd (png, gif, jpeg terminals)| 32
|[Postscript (also encapsulated postscript *.eps)| oL 32

33

[Linetypes, colors, and styles| 33
.. 34

(Linecolor variablel oL L 35
[Rgbcolor variablel 35
[Linestyles vs linetypes|o 35

35

BInd . . . 36
Bind space|l e e e 37
Mouse varfables o o o o 37

5 o 37

[Start-up (initialization)| 38

[String constants and string variables| 38

Substitut [C T | 39
[Substitution of system commands in backquotes| oo oo 39
[Substitution of string variables as macros| Lo 39
[String variables, macros, and command line substitution| 0L, 40

40
Quote Marks| e 41

[Time/Date datal 41

(I Plotting styles| 42

[Boxerrorbars| 43

Boxes| 43

Boxp 44

|[Boxxyerrorbars| 45

4 [gnuplot 4.6 | CONTENTS
[Candlesticksl 45
[Circles 46
a7
[Dots] 47
[Filledcurves] 48
[Financebars] 49
49
49
49
50
.. 52
|Automated iteration over multiple columns| oo oo oL 53

ge 53
.. 54
Image failsate] e 54
mpulses 54
[Labels| 54
[Lines 55
55
[Points| 55
[Polar] 55
56
Rebalpha 56
RgDh g 56
[Vectors| 56
Xerrorbars| 57
57
[Yerrorbars| 57

CONTENTS |gnup10t 4.6 | 5
Xerrorlines| 58
58
[Yerrorlines] 59
[3D (surface) plots| 59
[2D projection (set view map)| 59
LIl Commands| 60
60
[Calll 60
[Clearl 61
Dg 61
[Evaluatel 62
[Exit] 62
[Eitl 62
|Adjustable parameters| Lo 64
Bhort introductionlo 64
Error estimates oo o 65
[Statistical overviewl e e e e e e e e e e 65
[Practical guidelines| e 66

Controll e 66
[Control variabled 67
[Environment variables 67
DOIEEDranchl 67
... 68
... 68
[Help 69
History| 69
I 69
MEQIl. . . o o ot e 70
Iterationl 70
[Load 70
[Lower] 71

|gnup10t 4.6 | CONTENTS

71

72

... 72
Binary| e 73
Generall oL 73
... 74
Recordl . . . o ot 74
.. 74
Formafl ot 74
Endianlo o 75
.. 75
By . . 75

Edi . .. 75

Pngl . . e 75
Keywords| e 75
Dcanl e 76
.. 76

Dx, dy, dz|. e 76

[Flipx, flipy, flipz] 76

Origin | o e 76

Center] L e 76

Bofafd 76
.. 76
... 77
... 78
[Example datafile]o 79
Mdex] . . . o 79
Smoothl 80
.. 80

Beziell o 81
... 81

Sbezier] 81

Uniquel 81
.. 81
Cumulativel o 81
Cnormall 81

Kd VI o e e 81
[Special-filenames| 81
MRIUl - o o 83
USING| . . o v e e e e e e e e 83
Using ples| . . . e 84

CONTENTS |gnup10t 4.6 | 7

PSeudoColimmE -« « -« -« o o e e e e 85

KGCADELS . . . o o o o e o 85

ROGCIADElS o o o o e 85

NGBS . . . o o o o 85

2GCIABElS o o o 85

ZICRDEE o o o o 86

£070) P51 7 86
[EITOrDars . . o o o o o e e 86
[ETOrTmes] . . - v o o oo o e e e 86
[FUOCTIONS . - - v o o o e e e e e e e e 87
Parametrid . - - - o o o e e 87
RALEES . . o o o o e e e 87
MEEration] . - - -« o o o e e e 88
105 89
OVTER . . . o o e e e 90
[Printl 92
Pwd 92
Quit) 92
[Raisel 93
[Refreshl 93
[Replot) 93
[Reread] 94
[Resedl 94
95
Set-show! 95
Angles| L e e 95
AIToOWl . . o o 96
BUEOSCAIE . .« o o o o o e e e 08
[Parametric model e, 99

Polar modd o o oo e 99

Bars 99
BIDAl o 99
BINATEII] .« o v o e e e e e e e 100
Barderl o o 100
BoxWIATAl . . . o o o oo e e e 101

|gnup10t 4.6 | CONTENTS

... 102
... 102
Color boxl o 104
Colornamesl e 104
Contour] e 105
D €] - e e 105
Datafild o 105
[bet datafile fortranl. Lo 105

[Set datafile nofpe_trap|. oL oL 106

[Set datafile missing| e 106

[Set datafile separator| 107

[Set datafile commentscharslo oo 107

[Set datafile binary| oo 108
Decimalsign| L e 108
Derid3d] e 109
... 110
ding] e 110

[FT . . 111
Fontpath] o 111
[Formall o e 112
Gprintf] e 112
[Format specifiers| e e e 113
[Time/date specifiers| L 113
.. 114
Functiond o oot 114
Gridl . . . e e 115
Hidden3dl o e 115
... 117
Isosamples|. L e 117
Keyl . . oo 118
Key placement]| oL oL 119

Key samples| L 120
Labell oo 121
DE| . e e e e e e e 123
... 123
dpath| e 123
Locald o o 124
... 124
BIacrod. . . . o oo 124
Mapping]. e 125
Margin|. e 125

CONTENTS |gnup10t 4.6 | 9

Doubleclickl o o 126
Mouseformafl 127
Scrolling] L 127
RITIOUSE .« v v e e e e e e e e e 127
[Zooml . . . o o 127
Multiplot| 127
DIX2ECH . .« o oo e 129
IIXEICH e 129
... 129
.. 130
MIZECH . . . o o o 130
Object]| o e 130
Rectangle| o L e 130

DSE| . . e 131

Circlel . . . e 131
Polygon| e 131
Offsets] o e 132
Origin] L e e 132
Output] e 132
Paramefrid o o oo 133
PIofl 133
Pm3dl . . . o 134
Algorithml. o 134
PoSTEON -+« « v o e e e 135
Scanorder] L 135
pPING| e e e 136
[Color_assignment|. L 136
EEdenddl o o oo 136
.. 137
[Deprecated_options| e 137
Paleffd. o o 137
Regbtormulael e 139
Defimed . . . o oo 139
FUnctionsl vt 140
Cubehelix] o 140

e . . . 141
[Gamma correction|o oL L 141
... 141
[Pointintervalboxl oL 142
PolnfSIZEl o o o 142
Poladl. oo 142

[Enuplot 4.6
gnuplot 4.6 CONTENTS

Psdid.
D 143
Mo 143
T 143
... 144
TE 144
.. 144
... 144
ST 145
Tl 145
.................................. 146
LB 147
e S 147
T A 148
ST 148
.. 148
SR 149
S 150
e 150
DD 151
SIS 151
m .. 151
TEIL 152
.................................... 152
T 152
IME .. 153
TEEEED oo 153
CREBAI 153
e 154
.. 155
... 155
G 155
s 155
SRR 155
.. 155
............................... 156
CETEL. 156
oS 156
.. 156
S 157
RIIEL 157
S 157
157

CONTENTS |gnup10t 4.6 | 11

026627 e S 157
R2ZETOAXISl « -« o o e e 157
Rdatal o 157
RATCH . . o o o e 158
KIAhell o o 158
IMEICH o o e 159
RTAIZE .« o o o o e e 159
REca o 160

REcs me datal. - .« o o o oo e e e 163

[Xtics rangelimited| L 163
YPIAIE -« © v o o o e 163
RZEroaxisl o o oo 164
Y2datal 164
076275 (5 e R 164
2Iabell o 164
Y2MEICH . .« o o oo e 164
... 164
IY2HECH o 164
Y2ZeT0axisl .« - o o e 164
Wdatal 164
IVECH o o e 164
Iahell o o 164
YIEICH o e 165
YTANZE . - o o o o o 165
IVEICH 165
IYZEIOaxisl o o oo 165
Zdatal 165
ZATCH . . o o e 165
ZZeroaxisdl o 165
ChAatal o o o 165
COATCH . .« o o o e 165
/5 165
... 166
ZIabell 166
.. 166
ZIANGE .« o 166
... 166
CRIADE] . .« o o 166
COIMECH - -« . o o o o e e 166
COIange] o o oo e e 167

12 |gnup10t 4.6 | CONTENTS
Shell 167
167
Datafile o o 168
IMafrix] . . o o o o 168
[Example datafile] 170

Grid datal e 170
.. 171
[Stats (Statistical Summary)| 171
172
[Test] 172
[Undefine 172
[Unsetl 173
Upd 173
(Whilel 173
IV Terminal types| 173
[Complete list of terminals| 174
AedTOTl e e e e e 174
B . . . o 174
... 174
B . . 174
[Command-line_options|. L 175
[Monochrome_options|. 175

(Color resourcesl e 175
[Grayscale_resources| oL 176
LINETESOUICES -« « « ¢ v v v e e e e e e 176
Cairolatex] e e e 177
Canvasl. e e e 179
Cgll . . e e 180
B - o v o oo e 180
... 181
... 181

g dthl e 182
.. 182

Cem solid| e e 182

OIN SIZE| « « v . e e e e e e e e e e e e e e e 182

CONTENTS |gnup10t 4.6 | 13

Com WIdED] . .« . o o e e 182
.. 182
COnText] . -« . o o o e 182
... 184
[Calling gnuplot from ConTeXt| o 184
Corell. . o o 184
DEDUG] -« o o e e e 185
Dumbl . . . o 185
DxA. . . . o 185
DXYB008] . -« o o e e e e 185
.. 185
1 186
EIXVEA] -« o o o o o e e 187
EDSCAITO] . -« o o o e e e e e 187
EDSTAtox] .« © o o o o e e 187
.. 190
EXC . . o o 191
O 191
(71 R 192
(5 193
xamples| L e e e e 193
... 194
GIass . .« o 195
EDI6I38] .« « o o o 195
EDZOAT] . . o o o o 195
12 7555 0107 [195
EDel - - o o 195
12 5§71 196
EDDI - - - o o 196
TIAZEN] . . o . o o e e e e 196
TDEE] . o o o 197
YO - o e 197
Catex] o 197
15T 198
Cual . . . o 198
Cuatikad o o e 198
Macinfoshl o o e e 201
I . . . o 201
METAFONT TInstructions e 201

DD . . . o 202
BID] . o o o e e 203

|gnup10t 4.6 | CONTENTS

Nextl . . oo 205
[Openstep (next)| 205
DBl . - . o oo 206
Bdll. . . . 206
PAfcalra« o o 207
Pml. e 207
PNgl . . e 208

... 209
... 209
.. 210

[Editing postscript] oL 212

|[Postscript fontfile] 212

[Postscript prologuel 213

|[Postscript adobeglyphnames| o 213
IPslatex and pstex|. oL 214
PsEickd . . . o o o 215
QS| . . . 216
Q] . . e e 216
Regls|. . . . o e 217
Dunl .. 217
Vel . 217
Svgal . . e 218
[Tekd0l e 218
[MMeRATOX . . - o o o o o e 218
Mexdrawl . . .« o o ot e 218
Loif]l . e e 218
MIKZ . . o 219
MReanvas o oot 219
... 220
Vgagll . . . e 220
... 221
VX3 . . e e 221
IVIRdOWS .« o o o e e e 221

... 222

P = S 222

MeXTamEnUl . . . vt e e e e e 223

Wenuplot.mnu|o 223

Wenuplot.ini| L e 224
VXE . oo e e 224
IO . . 226

RITTONEE . - . v o o o e 227

CONTENTS |gnup10t 4.6 | 15
[Monochrome_options|. L e 228

(ColOT TeSOUTCESl .« . v . v o o e e e e e 229
[Grayscale_resources| L 229
LINETESOUICES -« « « ¢ v v v e e e e e e 229

[X11 pm3d_resources| e e 230

[X11 other resourcesl e e e e e e 231

XDl . . e e 231

V Bug 231
K mitations 231
(External libraries| 232
VI__Index 232

16 gnuplot 4.6
Part 1

Gnuplot

Copyright
Copyright (C) 1986 - 1993, 1998, 2004, 2007 Thomas Williams, Colin Kelley

Permission to use, copy, and distribute this software and its documentation for any purpose with or without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation.

Permission to modify the software is granted, but not the right to distribute the complete modified source
code. Modifications are to be distributed as patches to the released version. Permission to distribute binaries
produced by compiling modified sources is granted, provided you
1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,
2. add special version identification to distinguish your version
in addition to the base release version number,
3. provide your name and address as the primary contact for the
support of your modified version, and
4. retain our contact information in regard to use of the base
software.

Permission to distribute the released version of the source code along with corresponding source modifications
in the form of a patch file is granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty to the extent permitted by applicable
law.

AUTHORS

Original Software:
Thomas Williams, Colin Kelley.

Gnuplot 2.0 additions:
Russell Lang, Dave Kotz, John Campbell.

Gnuplot 3.0 additions:
Gershon Elber and many others.

Gnuplot 4.0 additions:
See list of contributors at head of this document.

Introduction

Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX, VMS,
and many other platforms. The source code is copyrighted but freely distributed (i.e., you don’t have to
pay for it). It was originally created to allow scientists and students to visualize mathematical functions and
data interactively, but has grown to support many non-interactive uses such as web scripting. It is also used
as a plotting engine by third-party applications like Octave. Gnuplot has been supported and under active
development since 1986.

Gnuplot supports many types of plots in either 2D and 3D. It can draw using lines, points, boxes, contours,
vector fields, surfaces, and various associated text. It also supports various specialized plot types.

Gnuplot supports many different types of output: interactive screen terminals (with mouse and hotkey
input), direct output to pen plotters or modern printers, and output to many file formats (eps, emf, fig, jpeg,

gnuplot 4.6 17

LaTeX, pdf, png, postscript, ...). Gnuplot is easily extensible to include new output modes. Recent additions
include interactive terminals based on wxWidgets (usable on multiple platforms), and Qt. Mouseable plots
embedded in web pages can be generated using the svg or HTML5 canvas terminal drivers.

The command language of gnuplot is case sensitive, i.e. commands and function names written in lowercase
are not the same as those written in capitals. All command names may be abbreviated as long as the
abbreviation is not ambiguous. Any number of commands may appear on a line, separated by semicolons
(;). Strings may be set off by either single or double quotes, although there are some subtle differences. See
syntax (p. and quotes (p. for more details. Examples:

load "filename"
cd ’dir’

Commands may extend over several input lines by ending each line but the last with a backslash (\). The
backslash must be the last character on each line. The effect is as if the backslash and newline were not there.
That is, no white space is implied, nor is a comment terminated. Therefore, commenting out a continued line
comments out the entire command (see comments (p. [22])). But note that if an error occurs somewhere
on a multi-line command, the parser may not be able to locate precisely where the error is and in that case
will not necessarily point to the correct line.

In this document, curly braces ({}) denote optional arguments and a vertical bar (|) separates mutually
exclusive choices. Gnuplot keywords or help topics are indicated by backquotes or boldface (where
available). Angle brackets (<>) are used to mark replaceable tokens. In many cases, a default value of the
token will be taken for optional arguments if the token is omitted, but these cases are not always denoted
with braces around the angle brackets.

For built-in help on any topic, type help followed by the name of the topic or help ? to get a menu of
available topics.

The new gnuplot user should begin by reading about plotting (if in an interactive session, type help
plotting).

See the simple.dem demo, also available together with other demos on the web page
http://www.gnuplot.info/demo/

Gnuplot can be started from a command line or from an icon according to the desktop environment.
Running it from command line can take the syntax

gnuplot {OPTIONS} filel file2 ...

where filel, file2, etc. are input file as in the load command. On X11-based systems, you can use
gnuplot {X110PTIONS} {OPTIONS} filel file2 ...

see your X11 documentation and x11 (p. [226]) in this document.

Options interpreted by gnuplot may come anywhere on the line. Files are executed in the order specified, as
are commands supplied by the -e option, for example

gnuplot filel.in -e "reset" file2.in

The special filename "-" is used to force reading from stdin. Gnuplot exits after the last file is processed. If
no load files are named, Gnuplot takes interactive input from stdin. See help batch/interactive (p.
for more details. The options specific to gnuplot can be listed by typing

gnuplot --help

See command line options (p. for more details.

In sessions with an interactive plot window you can hit 'h’ anywhere on the plot for help about hotkeys and
mousing features. Section seeking-assistance will help you to find further information, help and FAQ.

Seeking-assistance

The canonical gnuplot web page can be found at

http://www.gnuplot.info/demo/

18 gnuplot 4.6

http://www.gnuplot.info

Before seeking help, please check file FAQ.pdf or the above website for
FAQ (Frequently Asked Questions) list.

If you need help as a gnuplot user, please use the newsgroup
comp.graphics.apps.gnuplot

We prefer that you read the messages through the newsgroup rather than subscribing to the mailing list
which is also available and carries the same set of messages. Instructions for subscribing to gnuplot mailing
lists may be found via the gnuplot development website on SourceForge

http://sourceforge.net/projects/gnuplot

The address for mailing to list members is:

gnuplot-info@lists.sourceforge.net

Bug reports and code contributions should be uploaded to the trackers at

http://sourceforge.net/projects/gnuplot/support

Please check previous bug reports if the bug you want to report has not been already fixed in a newer version
of gnuplot.
A mailing list for those interested in development version of gnuplot is:

gnuplot-beta@lists.sourceforge.net

When posting a question, please include full details of the gnuplot version, the terminal type, and the
operating system you are using. A small script demonstrating the problem may be useful. Function plots
are preferable to datafile plots.

New features

This section lists major additions since version 4.4. For a more exhaustive list, see the NEWS file.

New syntax

This version of gnuplot introduces command iteration

and block-structured if/else/while/do constructs. See if
(p. , while (p. [173]), and do (p. . Simple it-
eration is possible inside plot or set commands. See

iteration (p. . General iteration spanning multiple
commands is possible using a block construct as shown

below. For a related new feature, see the summation
(p. expression type. Here is an example using sev-
eral of these new syntax features:

set multiplot layout 2,2
fourier(k, x) sin(3./2*k) /k * 2./3*cos(k*x)
do for [power = 0:3] {
TERMS = 10**power
set title sprintf("),g term Fourier series",TERMS)
plot 0.5 + sum [k=1:TERMS] fourier(k,x) notitle

1 term Fourier series 10 term Fourier series

100 term Fourier series 1000 term Fourier series

}

unset multiplot

It is now possible to select a column of data from a data file by matching a label in the first row of the file.
See columnhead (p. [27). For example

plot for [crop in "Oats Peas Beans"] ’data’ using "Year":crop

http://www.gnuplot.info
http://www.gnuplot.info/faq/
http://sourceforge.net/projects/gnuplot

gnuplot 4.6 19

Local customization of linetypes

You can now customize properties (color, linewidth, point type) of the default sequence of linetypes used in
plotting. See set linetype (p.[123]). This is normally done in an initialization file, either the system-wide
file gnuplotrc or a private file ~ /.gnuplot. See initialization (p. .

New plot styles

See documentation for plot styles boxplot (p. , circles (p. , ellipses (p. , and fillsteps (p. .

Revised polar axes

Polar plot mode has been reworked to support additional plot styles. The polar axes can now be drawn and
labeled independent of the x and y axes. See set polar (p.[142) and set rrange (p. [144]).

New smoothing algorithms

New smoothing algorithms have been added for both 2- and 3-dimensional plots. smooth kdensity and
smooth cumulative can be used with plot to draw smooth histograms and cumulative distribution func-
tions. Several new smoothing kernels have been added to dgrid3d for use with splot. See smooth (p.

dgrid3d (p. [109).

New time/date handling

Gnuplot now tracks time to millisecond precision. Time formats have been modified to match this. The new
built-in function time() returns the current time of day according to the system clock. Example: print the
current time to msec precision

print strftime("%H:%M:%.3S %d-%b-%Y",time(0.0))
18:15:04.253 16-Apr-2011

Statistical summary of data

The new stats command reads data from a file using the same syntax as the plot or splot commands.
Rather than drawing a graph, it prints out a statistical summary of the data contained in the column]s]
requested. The resulting statistics min, max, mean, standard deviation, correlation, etc. are also stored in
named variables that can be used to compose or modify subsequent plotting commands. See stats (p. .

New or revised terminal drivers

The qt driver implements an interactive terminal on top of the Qt graphics layer. It can function either as a
window in a full-featured desktop enviroment or as a full-screen application on a Qt-based embedded device.
The gt terminal is new and may still have some rough edges.

Two terminal types support web-based interactive display. The HTML5 canvas terminal was introduced
in version 4.4. The svg terminal has been extensively revised to include support for mousing and better
incorporation of svg plots from gnuplot into larger svg/xml documents.

The canvas terminal driver produces javascript output that draws onto the HTML canvas element of a web
page. It can produce either a complete web page containing a single plot, or a script that can be embedded
as part of an externally generated HTML document that perhaps contains multiple plots. The embedded
plots support browser-side mousing, including zoom/unzoom.

The lua terminal driver creates data intended to be further processed by a script in the lua programming
language. At this point only one such lua script, gnuplot-tikz.lua, is available. It produces a TeX document

20 gnuplot 4.6

suitable for use with the latex TikZ package. Other lua scripts could be written to process the gnuplot
output for use with other TeX packages, or with other non-TeX tools.

set term tikz is shorthand for set term lua tikz. As decribed above, it uses the generic lua terminal and
an external lua script to produce a latex document.

The context terminal driver creates output to be further processed by the ConTeXt TeX macro package.
To process its output, you additionally require the gnuplot module for ConTeXt available at

http://ctan.org/pkg/context-gnuplot

The epscairo terminal uses the cairo and pango libraries to create encapsulated postscript (eps) ouput. It
is an alternative to the postscript terminal driver for those who would like to have their eps files look equal
to e.g. screen output by the wxt terminal.

The cairolatex terminal uses the cairo backend of the pdfcairo or epscairo terminal to produce graphs
for inclusion in LaTeX documents. It creates pdf or eps graphics but transfers texts to LaTeX in the same
way as the epslatex terminal.

The windows terminal driver has been revised to suport transparency, antialiasing, buffered output, multiple
graph windows and copying to clipboard and saving of graphs as emf files. It has many new options and
a revised user interface. Additionaly, the code of the text console has been largely rewritten to support
wrapping of long lines. Help is now provided via HTML.

Backwards compatibility

Gnuplot version 4.0 deprecated certain syntax used in earlier versions, but continued to recognize it. This
is now under the control of a configuration option, and can be enabled as follows:

./configure --enable-backwards-compatibility

Notice: Deprecated syntax items may be removed entirely in some future version of gnuplot.

One major difference is the introduction of keywords to disambiguate complex commands, particularly
commands containing string variables. A notable issue was the use of bare numbers to specify offsets, line
and point types. Illustrative examples:

Deprecated:

set title "01ld4d" 0,-1
set data linespoints
plot 1 2 4 # horizontal line at y=1

New:

TITLE = "New"

set title TITLE offset char O, char -1
set style data linespoints

plot 1 linetype 2 pointtype 4

Batch /Interactive Operation

Gnuplot may be executed in either batch or interactive modes, and the two may even be mixed together
on many systems.

Any command-line arguments are assumed to be either program options (first character is -) or names of
files containing gnuplot commands. The option -e "command" may be used to force execution of a gnuplot
command. Each file or command string will be executed in the order specified. The special filename "-" is
indicates that commands are to be read from stdin. Gnuplot exits after the last file is processed. If no load
files and no command strings are specified, gnuplot accepts interactive input from stdin.

Both the exit and quit commands terminate the current command file and load the next one, until all have
been processed.

http://ctan.org/pkg/context-gnuplot

gnuplot 4.6 21

Examples:
To launch an interactive session:

gnuplot

To launch a batch session using two command files "inputl" and "input2":

gnuplot inputl input2

To launch an interactive session after an initialization file "header" and followed by another command file
"trailer":

gnuplot header - trailer

To give gnuplot commands directly in the command line, using the "-persist" option so that the plot remains
on the screen afterwards:

gnuplot -persist -e "set title ’Sine curve’; plot sin(x)"

To set user-defined variables a and s prior to executing commands from a file:

gnuplot -e "a=2; s=’file.png’" input.gpl

Canvas size

In earlier versions of gnuplot, some terminal types used the values from set size to control also the size of
the output canvas; others did not. The use of ’set size’ for this purpose was deprecated in version 4.2. Since
version 4.4 almost all terminals now behave as follows:

set term <terminal type> size <XX>, <YY> controls the size of the output file, or "canvas". Please
see individual terminal documentation for allowed values of the size parameters. By default, the plot will fill
this canvas.

set size <XX>, <YY> scales the plot itself relative to the size of the canvas. Scale values less than 1 will
cause the plot to not fill the entire canvas. Scale values larger than 1 will cause only a portion of the plot
to fit on the canvas. Please be aware that setting scale values larger than 1 may cause problems on some
terminal types.

The major exception to this convention is the PostScript driver, which by default continues to act as it has
in earlier versions. Be warned that the next version of gnuplot may change the default behaviour of the
PostScript driver as well.

Example:

set size 0.5, 0.5

set term png size 600, 400
set output "figure.png"
plot "data" with lines

These commands will produce an output file "figure.png" that is 600 pixels wide and 400 pixels tall. The
plot will fill the lower left quarter of this canvas. This is consistent with the way multiplot mode has always
worked.

Command-line-editing

Command-line editing and command history are supported using either an external gnu readline library,
an external BSD libedit library, or a built-in equivalent. This choice is a configuration option at the time
gnuplot is built.

The editing commands of the built-in version are given below. Please note that the action of the DEL key
is system-dependent. The gnu readline and BSD libedit libraries have their own documentation.

22 gnuplot 4.6

’ Command-line Editing Commands

Character Function
’ Line Editing
"B move back a single character.
°F move forward a single character.
~A move to the beginning of the line.
“E move to the end of the line.
“H delete the previous character.
DEL delete the current character.
°D delete current character. EOF if line is empty.
“K delete from current position to the end of line.
"L, "R redraw line in case it gets trashed.
Y delete the entire line.
W delete previous word.
] History
°P move back through history.
“N move forward through history.

Comments

Comments are supported as follows: a # may appear in most places in a line and gnuplot will ignore the
rest of the line. It will not have this effect inside quotes, inside numbers (including complex numbers), inside
command substitutions, etc. In short, it works anywhere it makes sense to work.

See also set datafile commentschars (p. [107) for specifying comment characters in data files. Note that
if a comment line ends in "\’ then the subsequent line is also treated as a comment.

Coordinates

The commands set arrow, set key, set label and set object allow you to draw something at an arbitrary
position on the graph. This position is specified by the syntax:

{<system>} <x>, {<system>} <y> {,{<system>} <z>}

Each <system> can either be first, second, graph, screen, or character.

first places the x, y, or z coordinate in the system defined by the left and bottom axes; second places it
in the system defined by the second axes (top and right); graph specifies the area within the axes — 0,0
is bottom left and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area; use negative z to get to
the base — see set xyplane (p.); screen specifies the screen area (the entire area — not just the
portion selected by set size), with 0,0 at bottom left and 1,1 at top right; and character gives the position
in character widths and heights from the bottom left of the screen area (screen 0,0), character coordinates
depend on the chosen font size.

If the coordinate system for x is not specified, first is used. If the system for y is not specified, the one used
for x is adopted.

In some cases, the given coordinate is not an absolute position but a relative value (e.g., the second position
in set arrow ... rto). In most cases, the given value serves as difference to the first position. If the given
coordinate resides in a logarithmic axis the value is interpreted as factor. For example,

set logscale x
set arrow 100,5 rto 10,2

plots an arrow from position 100,5 to position 1000,7 since the x axis is logarithmic while the y axis is linear.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string
according to the timefmt format string. See set xdata (p. [157]) and set timefmt (p.[154). Gnuplot
will also accept an integer expression, which will be interpreted as seconds from 1 January 2000.

gnuplot 4.6 23

Datastrings

Data files may contain string data consisting of either an arbitrary string of printable characters containing
no whitespace or an arbitrary string of characters, possibly including whitespace, delimited by double quotes.
The following sample line from a datafile is interpreted to contain four columns, with a text field in column
3:

1.000 2.000 "Third column is all of this text" 4.00

Text fields can be positioned within a 2-D or 3-D plot using the commands:

plot ’datafile’ using 1:2:4 with labels
splot ’datafile using 1:2:3:4 with labels

A column of text data can also be used to label the ticmarks along one or more of the plot axes. The example
below plots a line through a series of points with (X,Y) coordinates taken from columns 3 and 4 of the input
datafile. However, rather than generating regularly spaced tics along the x axis labeled numerically, gnuplot
will position a tic mark along the x axis at the X coordinate of each point and label the tic mark with text
taken from column 1 of the input datafile.

set xtics
plot ’datafile’ using 3:4:xticlabels(1l) with linespoints

There is also an option that will interpret the first entry in a column of input data (i.e. the column heading)
as a text field, and use it as the key title for data plotted from that column. The example given below will
use the first entry in column 2 to generate a title in the key box, while processing the remainder of columns
2 and 4 to draw the required line:

plot ’datafile’ using 1:(£($2)/$4) with lines title columnhead(2)

Another example:

plot for [i=2:6] ’datafile’ using i title "Results for ".columnhead(i)

See set style labels (p. , using xticlabels (p. , plot title (p. , using (p. .

Enhanced text mode

Many terminal types support an enhanced text mode in which additional formatting information is embedded
in the text string. For example, "x"2" will write x-squared as we are used to seeing it, with a superscript 2.
This mode is normally selected when you set the terminal, e.g. "set term png enhanced", but may also be
toggled afterward using "set termoption enhanced", or by marking individual strings as in "set label 'x_2’
noenhanced".

Enhanced Text Control Codes
Control Example Result Explanation
- a"x a” superscript
_ a_x Qg subscript
Q a@ b_{cd} a’, phantom box (occupies no width)
& d&{space}b d__uuub inserts space of specified length
- ~a{.8-} a overprints -’ on ’a’, raised by .8
times the current fontsize

Braces can be used to place multiple-character text where a single character is expected (e.g., 27{10}). To
change the font and/or size, use the full form: {/[fontname][=fontsize | *fontscale] text}. Thus {/Symbol=20
G} is a 20 pt GAMMA and {/*0.75 K} is a K at three-quarters of whatever fontsize is currently in effect.
(The ’/’ character MUST be the first character after the '{’.)

The phantom box is useful for a@~b_c to align superscripts and subscripts but does not work well for
overwriting an accent on a letter. For the latter, it is much better to use an encoding (e.g. is0-8859_1 or

24 gnuplot 4.6

utf8) that contains a large variety of letters with accents or other diacritical marks. See set encoding
(p- [110)). Since the box is non-spacing, it is sensible to put the shorter of the subscript or superscript in
the box (that is, after the @).

Space equal in length to a string can be inserted using the '&’ character. Thus
>abc&{def}ghi’

would produce
’abc ghi’.

The ’~ 7 character causes the next character or bracketed text to be overprinted by the following character
or bracketed text. The second text will be horizontally centered on the first. Thus *~ a/’ will result in an
‘a’ with a slash through it. You can also shift the second text vertically by preceding the second text with a
number, which will define the fraction of the current fontsize by which the text will be raised or lowered. In
this case the number and text must be enclosed in brackets because more than one character is necessary. If
the overprinted text begins with a number, put a space between the vertical offset and the text ("~ {abc}{.5
000}’); otherwise no space is needed (*~ {abc}{.5 — }). You can change the font for one or both strings (°~
a{.5 /*.2 o}’ — an ’a’ with a one-fifth-size ’0’ on top — and the space between the number and the slash is
necessary), but you can’t change it after the beginning of the string. Neither can you use any other special
syntax within either string. You can, of course, use control characters by escaping them (see below), such
as " a{\"}’

You can access special symbols numerically by specifying \character-code (in octal), e.g., {/Symbol \245}
is the symbol for infinity. This does not work for multibyte encodings like UTF-8, however. In a UTF-8
environment, you should be able to enter multibyte sequences implicitly by typing or otherwise selecting the
character you want.

You can escape control characters using \, e.g., \\, \{, and so on.

But be aware that strings in double-quotes are parsed differently than those enclosed in single-quotes. The
major difference is that backslashes may need to be doubled when in double-quoted strings.
Examples (these are hard to describe in words — try them!):

set xlabel ’Time (1076 {/Symbol m}s)’
set title ’{/Symbol=18 \\362@_{/=9.6 0} {/=12 x}} \\
{/Helvetica e~ {-{/Symbol m}~2/2} d}{/Symbol m}’

The file "ps_guide.ps" in the /docs/psdoc subdirectory of the gnuplot source distribution contains more
examples of the enhanced syntax.

Environment

A number of shell environment variables are understood by gnuplot. None of these are required, but may
be useful.

If GNUTERM is defined, it is used as the name of the terminal type to be used. This overrides any terminal
type sensed by gnuplot on start-up, but is itself overridden by the .gnuplot (or equivalent) start-up file (see
startup (p.) and, of course, by later explicit changes.

GNUHELP may be defined to be the pathname of the HELP file (gnuplot.gih).

On VMS, the logical name GNUPLOT$HELP should be defined as the name of the help library for gnuplot.
The gnuplot help can be put inside any system help library, allowing access to help from both within and
outside gnuplot if desired.

On Unix, HOME is used as the name of a directory to search for a .gnuplot file if none is found in the current
directory. On MS-DOS, Windows and OS/2, GNUPLOT is used. On Windows, the NT-specific variable
USERPROFILE is also tried. VMS, SYS$LOGIN: is used. Type help startup.

On Unix, PAGER is used as an output filter for help messages.
On Unix, SHELL is used for the shell command. On MS-DOS and OS/2, COMSPEC is used for the shell

command.

gnuplot 4.6 25

FIT_SCRIPT may be used to specify a gnuplot command to be executed when a fit is interrupted — see
fit (p. . FIT_LOG specifies the default filename of the logfile maintained by fit.

GNUPLOT_LIB may be used to define additional search directories for data and command files. The variable
may contain a single directory name, or a list of directories separated by a platform-specific path separator,
eg. 2> on Unix, or ’;’ on DOS/Windows/OS/2 platforms. The contents of GNUPLOT_LIB are appended to
the loadpath variable, but not saved with the save and save set commands.

Several gnuplot terminal drivers access TrueType fonts via the gd library. For these drivers the font search
path is controlled by the environmental variable GDFONTPATH. Furthermore, a default font for these
drivers may be set via the environmental variable GNUPLOT_DEFAULT_GDFONT.

The postscript terminal uses its own font search path. It is controlled by the environmental vari-
able GNUPLOT_FONTPATH. The format is the same as for GNUPLOT_LIB. The contents of GNU-
PLOT_FONTPATH are appended to the fontpath variable, but not saved with the save and save set
commands.

GNUPLOT_PS_DIR is used by the postscript driver to search for external prologue files. Depending on the
build process, gnuplot contains either a built-in copy of those files or a default hardcoded path. You can
use this variable have the postscript terminal use custom prologue files rather than the default files. See

postscript prologue (p. [213)).

Expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid. The prece-
dence of these operators is determined by the specifications of the C programming language. White space
(spaces and tabs) is ignored inside expressions.

Complex constants are expressed as {<real>,<imag>}, where <real> and <imag> must be numerical
constants. For example, {3,2} represents 3 + 2i; {0,1} represents 'i’ itself. The curly braces are explicitly
required here.

Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and C. Integers are entered as
"1, 10", etc; reals as "1.0", "-10.0", "lel", 3.5e-1, etc. The most important difference between the two
forms is in division: division of integers truncates: 5/2 = 2; division of reals does not: 5.0/2.0 = 2.5. In
mixed expressions, integers are "promoted" to reals before evaluation: 5/2e0 = 2.5. The result of division
of a negative integer by a positive one may vary among compilers. Try a test like "print -5/2" to determine
if your system chooses -2 or -3 as the answer.

The integer expression "1/0" may be used to generate an "undefined" flag, which causes a point to ignored.
Or you can use the pre-defined variable NaN to achieve the same result. See using (p. for an example.

The real and imaginary parts of complex expressions are always real, whatever the form in which they are
entered: in {3,2} the "3" and "2" are reals, not integers.

Gnuplot can also perform simple operations on strings and string variables. For example, the expression
("A" . "B" eq "AB") evaluates as true, illustrating the string concatenation operator and the string equality
operator.

A string which contains a numerical value is promoted to the corresponding integer or real value if used in
a numerical expression. Thus ("3" + "4" == 7) and (6.78 == "6.78") both evaluate to true. An integer,
but not a real or complex value, is promoted to a string if used in string concatenation. A typical case is
the use of integers to construct file names or other strings; e.g. ("file" . 4 eq "file4") is true.

Substrings can be specified using a postfixed range descriptor [beg:end]. For example, "ABCDEF"[3:4] ==
"CD" and "ABCDEF"[4:*] == "DEF" The syntax "string"[beg:end] is exactly equivalent to calling the
built-in string-valued function substr("string",beg,end), except that you cannot omit either beg or end from
the function call.

26 gnuplot 4.6

Functions

The math functions in gnuplot are the same as the corresponding functions in the Unix math library, except
that all functions accept integer, real, and complex arguments unless otherwise noted. Functions that accept
or return angles (e.g. sin(x), cos(x), arg(z)) treat angle values as radians, but this may be changed to degrees
using the command set angles.

] Math library functions ‘

Function Arguments Returns
abs(x) any absolute value of z, |:E|, same type
abs(x) complex length of x, y/real(z)? + imag(x)?
acos(x) any cos tx (1nverse cosme)
acosh(x) any cosh™ z (inverse hyperbolic cosine) in radians
airy(x) any Airy function Ai(x)
arg(x) complex the phase of =
asin(x) any sin~!' z (inverse sin)
asinh(x) any sinh ™! 2 (inverse hyperbolic sin) in radians
atan(x) any tan~! z (inverse tangent)
atan2(y,x) int or real tan—!(y/z) (inverse tangent)
atanh(x) any tanh™' 2 (inverse hyperbolic tangent) in radians
EllipticK (k) real k € (-1:1) K (k) complete elliptic integral of the first kind
EllipticE(k) real k € [-1:1] E(k) complete elliptic integral of the second kind
EllipticPi(n,k) real n<1, real k € (-1:1) II(n,k) complete elliptic integral of the third kind
besj0(x) int or real Jo Bessel function of z, in radians
besj1(x) int or real j1 Bessel function of z, in radians
besy0(x) int or real yo Bessel function of z, in radians
besyl(x) int or real y1 Bessel function of z, in radians
ceil(x) any [2], smallest integer not less than x (real part)
cos(x) any cos z, cosine of x
cosh(x) any cosh z, hyperbolic cosine of = in radians
erf(x) any erf(real(z)), error function of real(x)
erfe(x) any erfe(real(z)), 1.0 - error function of real(x)
exp(x) any e®, exponential function of x
expint(n,x) int n >0, real x > 0 E,(z) = [t "e~*!dt, exponential integral of x
floor(x) any |x], largest integer not greater than a (real part)
gamma(x) any gamma(real(z)), gamma function of real(x)
ibeta(p,q,x) any ibeta(real(p, ¢, x)), ibeta function of real(p,q,z)
inverf(x) any inverse error function of real(x)
igamma(a,x) any igammal(real(a, x)), igamma function of real(a,z)
imag(x) complex imaginary part of x as a real number
invnorm(x) any inverse normal distribution function of real(z)
int(x) real integer part of z, truncated toward zero
lambertw(x) real Lambert W function
lgamma(x) any lgammal(real(z)), lgamma function of real(z)
log(x) any log, x, natural logarithm (base €) of x
log10(x) any log, x, logarithm (base 10) of
norm(x) any normal distribution (Gaussian) function of real(x)
rand(x) int pseudo random number in the interval [0:1]
real(x) any real part of x
sgn(x) any lifz>0,-1ifx <0, 0if z =0. imag(z) ignored
sin(x) any sin x, sine of x
sinh(x) any sinh z, hyperbolic sine of = in radians
sqrt(x) any \/x, square root of
tan(x) any tanz, tangent of x
tanh(x) any tanh z, hyperbolic tangent of z in radians
voigt(x,y) real Voigt /Faddeeva function £ [%dt

gnuplot 4.6 27

String functions

Function Arguments Returns
gprintf(” format” x,...) any string result from applying gnuplot’s format parser
sprintf(” format” ;x,...) multiple string result from C-language sprintf
strlen(”string”) string int length of string in bytes
strstrt (7 string” " key”) strings int index of first character of substring ”key”
substr(”string” ,beg,end) multiple string 7string” [beg:end]
strftime(” timeformat” ,t) any string result from applying gnuplot’s time parser
strptime(” timeformat” ,s) string seconds since year 2000 as given in string s
system(” command”) string string containing output stream of shell command
word(”string” n) string, int returns the nth word in ”string”
words(”string”) string returns the number of words in ”string”

other gnuplot functions ‘

Function Arguments Returns

column(x) int or string column z during datafile manipulation.
columnhead(x) int string containing first entry of column z in datafile.

defined(X) variable name [DEPRECATED)] returns 1 if X is defined, 0 otherwise.

exists("X”) string returns 1 if a variable named X is defined, 0 otherwise.
stringcolumn(x) int or string content of column z as a string.
timecolumn(x) int timecolumn z during datafile manipulation.

tm_hour(x) int the hour

tm_mday(x) int the day of the month

tm_min(x) int the minute

tm_mon(x) int the month

tm_sec(x) int the second

tm-wday(x) int the day of the week

tm_yday(x) int the day of the year

tm_year(x) int the year

time(x) any the current system time
valid(x) int test validity of column(z) during datafile manip.

value(”name”) string returns the value of the named variable.

Elliptic integrals

The EllipticK (k) function returns the complete elliptic integral of the first kind, i.e. the definite integral
between 0 and pi/2 of the function (1-(k*sin(p))**2)**(-0.5). The domain of k is -1 to 1 (exclusive).

The EllipticE(k) function returns the complete elliptic integral of the second kind, i.e. the definite integral
between 0 and pi/2 of the function (1-(k*sin(p))**2)**0.5. The domain of k is -1 to 1 (inclusive).

The EllipticPi(n,k) function returns the complete elliptic integral of the third kind, i.e. the definite integral
between 0 and pi/2 of the function (1-(k*sin(p))**2)**(-0.5)/(1-n*sin(p)**2). The parameter n must
be less than 1, while k must lie between -1 and 1 (exclusive). Note that by definition EllipticPi(0,k) ==
EllipticK (k) for all possible values of k.

Random number generator

The function rand() produces a sequence of pseudo-random numbers between 0 and 1 using an algorithm
from P. L’Ecuyer and S. Cote, "Implementing a random number package with splitting facilities", ACM
Transactions on Mathematical Software, 17:98-111 (1991).

rand (0) returns a pseudo random number in the interval [0:1]
generated from the current value of two internal
32-bit seeds.

rand(-1) resets both seeds to a standard value.

28 gnuplot 4.6

rand (x) for integer 0 < x < 2731-1 sets both internal seeds
to x.
rand({x,y}) for integer O < x,y < 27°31-1 sets seedl to x and
seed2 to y.
Value

B = value("A") is effectively the same as B = A, where A is the name of a user-defined variable. This is
useful when the name of the variable is itself held in a string variable. See user-defined variables (p. [30)).
It also allows you to read the name of a variable from a data file. If the argument is a numerical expression,
value() returns the value of that expression. If the argument is a string that does not correspond to a
currently defined variable, value() returns NaN.

Operators

The operators in gnuplot are the same as the corresponding operators in the C programming language,
except that all operators accept integer, real, and complex arguments, unless otherwise noted. The **
operator (exponentiation) is supported, as in FORTRAN.

Parentheses may be used to change order of evaluation.

Unary

The following is a list of all the unary operators and their usages:

’ Unary Operators

Symbol Example Explanation
- -a unary minus
+a unary plus (no-operation)
- “a * one’s complement
! la * logical negation
! al * factorial
$ $3 * call arg/column during ‘using’ manipulation

(*) Starred explanations indicate that the operator requires an integer argument.

Operator precedence is the same as in Fortran and C. As in those languages, parentheses may be used to
change the order of operation. Thus -2**2 = -4, but (-2)**2 = 4.

The factorial operator returns a real number to allow a greater range.

Binary

The following is a list of all the binary operators and their usages:

gnuplot 4.6 29

’ Binary Operators

Symbol Example FExplanation
*k ax*xxb exponentiation
* ax*b multiplication
/ a/b division
yA a’%b * modulo
+ a+b addition
- a-b subtraction
== a== equality
1= al=b inequality
< a<b less than
<= a<=b less than or equal to
> a>b greater than
>= a>=b greater than or equal to
& a&b * bitwise AND
- a"b * bitwise exclusive OR
| alb * bitwise inclusive OR
&& a&&b * logical AND
[l allb * logical OR
= a=>b assignment
s (a,b) serial evaluation
A.B string concatenation
eq A eq B string equality
ne A ne B string inequality

(*) Starred explanations indicate that the operator requires integer arguments. Capital letters A and B
indicate that the operator requires string arguments.

Logical AND (&&) and OR (]|) short-circuit the way they do in C. That is, the second && operand is not
evaluated if the first is false; the second || operand is not evaluated if the first is true.

Serial evaluation occurs only in parentheses and is guaranteed to proceed in left to right order. The value of
the rightmost subexpression is returned.

Ternary

There is a single ternary operator:

’ Ternary Operator

Symbol Example Explanation
7 a’b:c ternary operation

The ternary operator behaves as it does in C. The first argument (a), which must be an integer, is evaluated.
If it is true (non-zero), the second argument (b) is evaluated and returned; otherwise the third argument (c)
is evaluated and returned.

The ternary operator is very useful both in constructing piecewise functions and in plotting points only when
certain conditions are met.

Examples:

Plot a function that is to equal sin(x) for 0 <= x < 1, 1/x for 1 <= x < 2, and undefined elsewhere:

f(x) = 0<=x && x<1 ? sin(x) : 1<=x && x<2 7 1/x : 1/0
plot f£(x)

Note that gnuplot quietly ignores undefined values, so the final branch of the function (1/0) will produce
no plottable points. Note also that f(x) will be plotted as a continuous function across the discontinuity if
a line style is used. To plot it discontinuously, create separate functions for the two pieces. (Parametric
functions are also useful for this purpose.)

30 gnuplot 4.6

For data in a file, plot the average of the data in columns 2 and 3 against the datum in column 1, but only
if the datum in column 4 is non-negative:

plot ’file’ using 1:($4<0 7 1/0 : ($2+$3)/2)

For an explanation of the using syntax, please see plot datafile using (p. .

Summation

A summation expression has the form

sum [<var> = <start> : <end>] <expression>

<var> is treated as an integer variable that takes on successive integral values from <start> to <end>. For
each of these, the current value of <expression> is added to a running total whose final value becomes the
value of the summation expression. Examples:
print sum [i=1:10] i
55.
Equivalent to plot ’data’ using 1:($2+$3+$4+$5+$6+...)
plot ’data’ using 1 : (sum [col=2:MAXCOL] column(col))

It is not necessary that <expression> contain the variable <var>. Although <start> and <end> can be
specified as variables or expressions, their value cannot be changed dynamically as a side-effect of carrying
out the summation. If <end> is less than <start> then the value of the summation is zero.

Gnuplot-defined variables

Gnuplot maintains a number of read-only variables that reflect the current internal state of the program and
the most recent plot. These variables begin with the prefix "GPVAL_". Examples include GPVAL_TERM,
GPVAL_X_MIN, GPVAL X _MAX, GPVAL_Y_MIN. Type show variables all to display the complete list
and current values. Values related to axes parameters (ranges, log base) are values used during the last plot,
not those currently set.

Example: To calculate the fractional screen coordinates of the point [X,Y]

GRAPH_X = (X - GPVAL_X_MIN) / (GPVAL_X_MAX - GPVAL_X_MIN)

GRAPH_Y = (Y - GPVAL_Y_MIN) / (GPVAL_Y_MAX - GPVAL_Y_MIN)

SCREEN_X = GPVAL_TERM_XMIN + GRAPH_X * (GPVAL_TERM_XMAX - GPVAL_TERM_XMIN)
SCREEN_Y = GPVAL_TERM_YMIN + GRAPH_Y * (GPVAL_TERM_YMAX - GPVAL_TERM_YMIN)
FRAC_X = SCREEN_X / GPVAL_TERM_XSIZE

FRAC_Y = SCREEN_Y / GPVAL_TERM_YSIZE

The read-only variable GPVAL_ERRNO is set to a non-zero value if any gnuplot command terminates early
due to an error. The most recent error message is stored in the string variable GPVAL_ERRMSG. Both
GPVAL_ERRNO and GPVAL_ERRMSG can be cleared using the command reset errors.

Interactive terminals with mouse functionality maintain read-only variables with the prefix "MOUSE_".
See mouse variables (p. for details.

The fit mechanism uses several variables with names that begin "FIT_". It is safest to avoid using such
names. "FIT_LIMIT", however, is one that you may wish to redefine. Under set fit errorvariables,
the error for each fitted parameter will be stored in a variable named like the parameter, but with "_err"
appended. See the documentation on fit (p. for details.

See user-defined variables (p. , reset errors (p. , mouse variables (p. , and fit (p. .

User-defined variables and functions

New user-defined variables and functions of one through twelve variables may be declared and used anywhere,
including on the plot command itself.

User-defined function syntax:

gnuplot 4.6 31

<func-name>(<dummyl1> {,<dummy2>} ... {,<dummy12>}) = <expression>

where <expression> is defined in terms of <dummy1> through <dummy12>.

User-defined variable syntax:
<variable-name> = <constant-expression>

Examples:

w=2
floor(tan(pi/2 - 0.1))
f(x) = sin(w*x)
sinc(x) = sin(pi*x)/(pi*x)
delta(t) = (t == 0)
ramp(t) = (t >0) 27t : 0
min(a,b) = (a<b) ?7a:b
comb(n,k) = n!/(k!'*(n-k)!)
len3d(x,y,2z) = sqrt(xxx+y*y+z*z)
plot £f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, £(x)

file = "mydata.inp"
file(n) = sprintf("run_%d.dat",n)

The final two examples illustrate a user-defined string variable and a user-defined string function.
Note that the variables pi (3.14159...) and NaN (IEEE "Not a Number") are already defined. You can
redefine these to something else if you really need to. The original values can be recovered by setting:

NaN = GPVAL_NaN
pi = GPVAL_pi

Other variables may be defined under various gnuplot operations like mousing in interactive terminals or
fitting; see gnuplot-defined variables (p. for details.
You can check for existence of a given variable V by the exists("V") expression. For example

a =10

if (exists("a")) print "a is defined"

if (lexists("b")) print "b is not defined"

Valid names are the same as in most programming languages: they must begin with a letter, but subsequent
characters may be letters, digits, or "_".
Each function definition is made available as a special string-valued variable with the prefix 'GPFUN_".

Example:
set label GPFUN_sinc at graph .05,.95

See show functions (p.[114)), functions (p. [87), gnuplot-defined variables (p. [30), macros (p.[39),
value (p. [28)).

Fonts

Gnuplot does not provide any fonts of its own. It relies on external font handling, the details of which
unfortunately vary from one terminal type to another. Brief documentation of font mechanisms that apply
to more than one terminal type is given here. For information on font use by other individual terminals, see
the documentation for that terminal.

Cairo (pdfcairo, pngcairo, epscairo, wxt terminals)

Sorry, this section is under construction. These terminals find and access fonts using the external fontconfig
tool set. Please see the

32 gnuplot 4.6

fontconfig user manual.

It is usually sufficient in gnuplot to request a font by a generic name and size, letting fontconfig substitute
a similar font if necessary. The following will probably all work:

set term pdfcairo font "sans,12"
set term pdfcairo font "Times,12"
set term pdfcairo font "Times-New-Roman, 12"

Gd (png, gif, jpeg terminals)

Font handling for the png, gif, and jpeg terminals is done by the external library libgd. Five basic fonts are
provided directly by libgd. These are tiny (5x8 pixels), small (6x12 pixels), medium, (7x13 Bold), large
(8x16) or giant (9x15 pixels). These fonts cannot be scaled or rotated. Use one of these keywords instead
of the font keyword. E.g.

set term png tiny

On most systems libgd also provides access to Adobe Type 1 fonts (*.pfa) and TrueType fonts (*.ttf). You
must give the name of the font file, not the name of the font inside it, in the form "<face> {,<pointsize>}".
<face> is either the full pathname to the font file, or the first part of a filename in one of the directories
listed in the GDFONTPATH environmental variable. That is, ’set term png font "Face"’ will look for a font
file named either <somedirectory> /Face.ttf or <somedirectory>/Face.pfa. For example, if GDFONTPATH
contains /usr/local/fonts/ttf: /usr/local/fonts/pfa then the following pairs of commands are equivalent

set term png font "arial"

set term png font "/usr/local/fonts/ttf/arial.ttf"

set term png font "Helvetica"

set term png font "/usr/local/fonts/pfa/Helvetica.pfa"

To request a default font size at the same time:

set term png font "arial, 11"

Both TrueType and Adobe Type 1 fonts are fully scalable and rotatable. If no specific font is requested in
the "set term" command, gnuplot checks the environmental variable GNUPLOT_DEFAULT_GDFONT to
see if there is a preferred default font.

Postscript (also encapsulated postscript *.eps)

PostScript font handling is done by the printer or viewing program. Gnuplot can create valid PostScript or
encapsulated PostScript (*.eps) even if no fonts at all are installed on your computer. Gnuplot simply refers
to the font by name in the output file, and assumes that the printer or viewing program will know how to
find or approximate a font by that name.

All PostScript printers or viewers should know about the standard set of Adobe fonts Times-Roman,
Helvetica, Courier, and Symbol. It is likely that many additional fonts are also available, but the specific
set depends on your system or printer configuration. Gnuplot does not know or care about this; the output
* ps or *.eps files that it creates will simply refer to whatever font names you request.

Thus

set term postscript eps font "Times-Roman, 12"

will produce output that is suitable for all printers and viewers.
On the other hand

set term postscript eps font "Garamond-Premier-Pro-Italic"

will produce an output file that contains valid PostScript, but since it refers to a specialized font, only some
printers or viewers will be able to display the specific font that was requested. Most will substitute a different
font.

http://fontconfig.org/fontconfig-user.html

gnuplot 4.6 33

However, it is possible to embed a specific font in the output file so that all printers will be able to use it.
This requires that the a suitable font description file is available on your system. Note that some font files
require specific licensing if they are to be embedded in this way. See postscript fontfile (p. for more
detailed description and examples.

Glossary

Throughout this document an attempt has been made to maintain consistency of nomenclature. This cannot
be wholly successful because as gnuplot has evolved over time, certain command and keyword names have
been adopted that preclude such perfection. This section contains explanations of the way some of these
terms are used.

A "page" or "screen" or "canvas" is the entire area addressable by gnuplot. On a desktop it is a full
window; on a plotter, it is a single sheet of paper; in svga mode it is the full monitor screen.

A screen may contain one or more "plots". A plot is defined by an abscissa and an ordinate, although these
need not actually appear on it, as well as the margins and any text written therein.

A plot contains one "graph". A graph is defined by an abscissa and an ordinate, although these need not
actually appear on it.

A graph may contain one or more "lines". A line is a single function or data set. "Line" is also a plotting
style. The word will also be used in sense "a line of text". Presumably the context will remove any ambiguity.

The lines on a graph may have individual names. These may be listed together with a sample of the plotting
style used to represent them in the "key", sometimes also called the "legend".

The word "title" occurs with multiple meanings in gnuplot. In this document, it will always be preceded
by the adjective "plot", "line", or "key" to differentiate among them. A 2D graph may have up to four
labelled axes. The names of the four axes are "x" for the axis along the bottom border of the plot, "y" for
the axis along the left border, "x2" for the top border, and "y2" for the right border. See axes (p. .

A 3D graph may have up to three labelled axes — "x", "y" and "z". It is not possible to say where on the
graph any particular axis will fall because you can change the direction from which the graph is seen with
set view.

When discussing data files, the term "record" will be resurrected and used to denote a single line of text
in the file, that is, the characters between newline or end-of-record characters. A "point" is the datum
extracted from a single record. A "datablock" is a set of points from consecutive records, delimited by blank
records. A line, when referred to in the context of a data file, is a subset of a datablock.

Linetypes, colors, and styles

Each gnuplot terminal type provides a set of distinct "linetypes". These may differ in color, in thickness,
in dot/dash pattern, or in some combination of color and dot/dash. The default linetypes for a particular
terminal can be previewed by issuing the test command after setting the terminal type. The pre-defined
colors and dot/dash patterns are not guaranteed to be consistent for all terminal types, but all terminals
use the special linetype -1 to mean a solid line in the primary foreground color (normally black).

You can redefine the default linetype properties either interactively or via an initialization file. This allows
you to customize the colors and other properties of the lines used by all gnuplot plotting commands. See

set linetype (p.[123)).
By default, successive functions or datafiles plotted by a single command will be assigned successive linetypes.

You can override this default sequence by specifying a particular linetype for any function, datafile, or plot
element.

Examples:
plot "foo", "bar" # plot two files using linetypes 1, 2
plot sin(x) linetype 4 # terminal-specific linetype color 4

plot sin(x) 1t -1 # black

34 gnuplot 4.6

For many terminal types it is also possible to assign user-defined colors using explicit rgb (red, green, blue)
values, named colors, or color values that refer to the current pm3d palette.

Examples:

plot sin(x) 1t rgb "violet" # one of gnuplot’s named colors
plot sin(x) 1t rgb "#FFOOFF" # explicit RGB triple in hexadecimal
plot sin(x) 1t palette cb -45 # whatever color corresponds to -45

in the current cbrange of the palette
#

plot sin(x) 1t palette frac 0.3 fractional value along the palette

See show colornames (p. [104)), set palette (p. [137)), cbrange (p. [167)).

For terminals that support dot/dash patterns, each default linetype has both a dot-dash pattern and a
default color. Gnuplot does not currently provide a mechanism for changing the dot-dash pattern, so if you
want both a particular dash pattern and a particular color you must first choose a linetype that has the
required dash pattern, then override the default color using the keyword linecolor, abbreviated lc. For
example, the postscript terminal provides a dashed blue line as linetype 3. The plot commands below use
this same dash pattern for three plots, one in blue (the default), another in red (the default for linetype 1),
and a third in gold.

Example:

set term postscript dashed color
plot ’foo’ 1t 3, ’baz’ 1t 3 linecolor 1, ’bar’ 1t 3 1lc rgb ’gold’

Colorspec

Many commands allow you to specify a linetype with an explicit color. Terminal-independent color choice
is only possible for terminals that support RGB color or pm3d palettes.

Syntax:

{linecolor | 1c} {<colorspec> | <n>}
. {textcolor | tc} {<colorspec> | {linetype | 1t} <n>}

where <colorspec> has one of the following forms:

rgbcolor "colorname"
rgbcolor "#RRGGBB"

rgbcolor variable # color is read from input file
palette frac <val> # <val> runs from O to 1

palette cb <value> # <val> lies within cbrange

palette z

variable # color index is read from input file

The "<n>" is the linetype number the color of which is used, see test (p.|172)).

"colorname" refers to one of the color names built in to gnuplot. For a list of the available names, see show
colornames (p. [104)).

"#RRGGBB" is a hexadecimal constant preceded by the "#" symbol. The RRGGBB represents the red,
green, and blue components of the color, each on a scale from 0 - 255. For example, magenta = full-scale
red + full-scale blue would be represented by #FF00FF, which is the hexadecimal representation of (255
<< 16) + (0 << 8) + (255).

The color palette is a linear gradient of colors that smoothly maps a single numerical value onto a particular
color. Two such mappings are always in effect. palette frac maps a fractional value between 0 and 1 onto
the full range of the color palette. palette cb maps the range of the color axis onto the same palette. See
set cbrange (p.[L67). See also set colorbox (p.[104). You can use either of these to select a constant
color from the current palette.

"palette z" maps the z value of each plot segment or plot element into the cbrange mapping of the palette.
This allows smoothly-varying color along a 3d line or surface. It also allows coloring 2D plots by palette
values read from an extra column of data (not all 2D plot styles allow an extra column).

gnuplot 4.6 35

Linecolor variable

Ic variable tells the program to use the value read from one column of the input data as a linetype index,
and use the color belonging to that linetype. This requires a corresponding additional column in the using
specifier. Text colors can be set similarly using tc variable.

Examples:

Use the third column of data to assign colors to individual points
plot ’data’ using 1:2:3 with points lc variable

A single data file may contain multiple sets of data, separated by two
blank lines. Each data set is assigned as index value (see ‘index‘)

that can be retrieved via the ‘using‘ specifier ‘column(-2)°.

See ‘pseudocolumns‘. This example uses to value in column -2 to

draw each data set in a different line color.

plot ’data’ using 1:2:(column(-2)) with lines lc variable

Rgbcolor variable

You can assign a separate color for each data point, line segment, or label in your plot. lc rgbcolor variable
tells the program to read RGB color information for each line in the data file. This requires a corresponding
additional column in the using specifier. The extra column is interpreted as a 24-bit packed RGB triple.
If the value is provided directly in the data file it is easiest to give it as a hexidecimal value (see rgbcolor
(p.) Alternatively, the using specifier can contain an expression that evaluates to a 24-bit RGB color
as in the example below. Text colors are similarly set using tc rgbcolor variable.

Example:
Place colored points in 3D at the x,y,z coordinates corresponding to
their red, green, and blue components
rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int(b)
splot "data" using 1:2:3:(rgb($1,$2,$3)) with points lc rgb variable

Linestyles vs linetypes

Lines can have additional properties such as linewidth. You can associate these various properties, as well
as equivalent properties for point symbols, into user-defined "linestyles" using the command set style line.
Once you have defined a linestyle, you can use it in a plot command to control the appearance of one or
more plot elements.

Whereas linetypes are permanent (they last until you explicitly redefine them), linestyles are temporary.
They only last until the next reset of the graphics state.

Examples:

define a new line style with terminal-independent color cyan,

linewidth 3, and associated point type 6 (a circle with a dot in it).
set style line 5 1t rgb "cyan" lw 3 pt 6

plot sin(x) with linespoints 1ls 5 # user-defined line style 5

Mouse input

Many terminals allow interaction with the current plot using the mouse. Some also support the definition
of hotkeys to activate pre-defined functions by hitting a single key while the mouse focus is in the active
plot window. It is even possible to combine mouse input with batch command scripts, by invoking the
command pause mouse and then using the mouse variables returned by mouse clicking as parameters for
subsequent scripted actions. See bind (p. and mouse variables (p. . See also the command set

mouse (p. [126)).

36 gnuplot 4.6

Bind

Syntax:
bind {allwindows} [<key-sequence>] ["<gnuplot commands>"]

bind <key-sequence> ""
reset bind

The bind allows defining or redefining a hotkey, i.e. a sequence of gnuplot commands which will be executed
when a certain key or key sequence is pressed while the driver’s window has the input focus. Note that bind
is only available if gnuplot was compiled with mouse support and it is used by all mouse-capable terminals.
A user-specified binding supersedes any builtin bindings, except that <space> and ’q’ cannot normally be
rebound. For an exception, see bind space (p. .

Mouse buttons cannot be rebound.

You get the list of all hotkeys by typing show bind or bind or by typing the hotkey 'h’ in the graph window.
Key bindings are restored to their default state by reset bind.

Note that multikey-bindings with modifiers must be given in quotes.

Normally hotkeys are only recognized when the currently active plot window has focus. bind allwindows
<key> ... (short form: bind all <key> ...) causes the binding for <key> to apply to all gnuplot plot
windows, active or not. In this case gnuplot variable MOUSE_KEY_WINDOW is set to the ID of the
originating window, and may be used by the bound command.

Examples:
- set bindings:

bind a "replot"

bind "ctrl-a" "plot x*x"

bind "ctrl-alt-a" ’print "great"’

bind Home "set view 60,30; replot"

bind all Home ’print "This is window " ,MOUSE_KEY_WINDOW’

- show bindings:

bind "ctrl-a" # shows the binding for ctrl-a
bind # shows all bindings
show bind # show all bindings

- remove bindings:

bind "ctrl-alt-a" "" # removes binding for ctrl-alt-a

(note that builtins cannot be removed)
reset bind # installs default (builtin) bindings
bind! # deprecated form of "reset bind"

- bind a key to toggle something:
v=0
bind "ctrl-r" "v=v+1;if(v%2)set term x11 noraise; else set term x11 raise"

Modifiers (ctrl / alt) are case insensitive, keys not:

ctrl-alt-a == CtRl-alT-a
ctrl-alt-a != ctrl-alt-A

List of modifiers (alt == meta):
ctrl, alt

List of supported special keys:
"BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
"Sys_Req", "Escape", "Delete", "Home", "Left", “Up", "Right", "DOWI].",
"PageUp", "PageDown", "End", "Begin",

gnuplot 4.6 37

"KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
"KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
"KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
"KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",
"KP_Divide",

llKP_lll - llKP_gll s |IF1II —_ I|F12l|

The following are window events rather than actual keys

"Close"

See also help for mouse (p. [126)).

Bind space

If gnuplot was built with configuration option —enable-raise-console, then typing <space> in the plot window
raises gnuplot’s command window. This hotkey can be changed to ctrl-space by starting gnuplot as ’gnuplot
-ctrl’, or by setting the XResource 'gnuplot*ctrlq’. See x11 command-line-options (p. .

Mouse variables

When mousing is active, clicking in the active window will set several user variables that can be accessed
from the gnuplot command line. The coordinates of the mouse at the time of the click are stored in MOUSE_X
MOUSE_Y MOUSE_X2 and MOUSE_Y2. The mouse button clicked, and any meta-keys active at that time,
are stored in MOUSE_BUTTON MOUSE_SHIFT MOUSE_ALT and MOUSE_CTRL. These variables are
set to undefined at the start of every plot, and only become defined in the event of a mouse click in the
active plot window. To determine from a script if the mouse has been clicked in the active plot window, it
is sufficient to test for any one of these variables being defined.

plot ’something’

pause mouse

if (defined (MOUSE_BUTTON)) call ’something_else’; \
else print "No mouse click."

It is also possible to track keystrokes in the plot window using the mousing code.

plot ’something’
pause mouse keypress
print "Keystroke ", MOUSE_KEY, " at ", MOUSE_X, " ", MOUSE_Y

When pause mouse keypress is terminated by a keypress, then MOUSE_KEY will contain the ascii
character value of the key that was pressed. MOUSE_CHAR will contain the character itself as a string
variable. If the pause command is terminated abnormally (e.g. by ctrl-C or by externally closing the plot
window) then MOUSE_KEY will equal -1.

Note that after a zoom by mouse, you can read the new ranges as GPVAL_X_MIN, GPVAL_X_MAX,
GPVAL_Y_MIN, and GPVAL_Y_MAX, see gnuplot-defined variables (p. .

Plotting

There are three gnuplot commands which actually create a plot: plot, splot and replot. plot generates
2D plots, splot generates 3D plots (actually 2D projections, of course), and replot appends its arguments
to the previous plot or splot and executes the modified command.

Much of the general information about plotting can be found in the discussion of plot; information specific
to 3D can be found in the splot section.

38 gnuplot 4.6

plot operates in either rectangular or polar coordinates — see set polar (p. for details of the latter.
splot operates only in rectangular coordinates, but the set mapping command allows for a few other
coordinate systems to be treated. In addition, the using option allows both plot and splot to treat almost
any coordinate system you’d care to define.

plot also lets you use each of the four borders — x (bottom), x2 (top), y (left) and y2 (right) — as an
independent axis. The axes option lets you choose which pair of axes a given function or data set is plotted
against. A full complement of set commands exists to give you complete control over the scales and labelling
of each axis. Some commands have the name of an axis built into their names, such as set xlabel. Other
commands have one or more axis names as options, such as set logscale xy. Commands and options
controlling the z axis have no effect on 2D graphs.

splot can plot surfaces and contours in addition to points and/or lines. See set isosamples (p. for
information about defining the grid for a 3D function. See splot datafile (p. for information about
the requisite file structure for 3D data values, set contour (p. and set cntrparam (p. for
information about contours.

In splot, control over the scales and labels of the axes are the same as with plot, except that commands
and options controlling the x2 and y2 axes have no effect whereas of course those controlling the z axis do
take effect.

Start-up (initialization)

When gnuplot is run, it first looks for a system-wide initialization file named gnuplotrc. The location of
this file is determined when the program is built and is reported by show loadpath. The program then
looks in the user’s HOME directory for a file called .gnuplot on Unix-like systems or GNUPLOT.INI
on other systems. (Windows and OS/2 will look for it in the directory named in the environment variable
GNUPLOT; Windows will use USERPROFILE if GNUPLOT is not defined). Note: The program can
be configured to look first in the current directory, but this is not recommended because it is bad security
practice.

String constants and string variables

In addition to string constants, most gnuplot commands also accept a string variable, a string expression,
or a function that returns a string. For example, the following four methods of creating a plot all result in
the same plot title:

four = "4"
graph4 = "Title for plot #4"
graph(n) = sprintf("Title for plot #Jd",n)

plot ’data.4’ title "Title for plot #4"
plot ’data.4’ title graph4

plot ’data.4’ title "Title for plot #".four
plot ’data.4’ title graph(4)

Since integers are promoted to strings when operated on by the string concatenation operator, the following
method also works:

N=4
plot ’data.’.N title "Title for plot #".N

In general, elements on the command line will only be evaluated as possible string variables if they are not
otherwise recognizable as part of the normal gnuplot syntax. So the following sequence of commands is legal,
although probably should be avoided so as not to cause confusion:

plot = "my_datafile.dat"
title = "My Title"
plot plot title title

gnuplot 4.6 39

There are three binary operators that require string operands: the string concatenation operator ".", the
string equality operator "eq" and the string inequality operator "ne". The following example will print
TRUE.

if ("A"."B" eq "AB") print "TRUE"

See also the two string formatting functions gprintf (p. [112)) and sprintf (p. [27).

Substrings can be specified by appending a range specifier to any string, string variable, or string-valued
function. The range specifier has the form [begin:end], where begin is the index of the first character of the
substring and end is the index of the last character of the substring. The first character has index 1. The
begin or end fields may be empty, or contain "*’, to indicate the true start or end of the original string. E.g.
str[:] and str[*:*] both describe the full string str.

Substitution and Command line macros

When a command line to gnuplot is first read, i.e. before it is interpreted or executed, two forms of lexical
substitution are performed. These are triggered by the presence of text in backquotes (ascii character 96) or
preceded by @ (ascii character 64).

Substitution of system commands in backquotes

Command-line substitution is specified by a system command enclosed in backquotes. This command is
spawned and the output it produces replaces the backquoted text on the command line. Some implementa-
tions also support pipes; see plot datafile special-filenames (p. .

Command-line substitution can be used anywhere on the gnuplot command line, except inside strings
delimited by single quotes.

Example:

This will run the program leastsq and replace leastsq (including backquotes) on the command line with
its output:

f(x) = ‘leastsq‘

or, in VMS
f(x) = ‘run leastsq‘

These will generate labels with the current time and userid:

set label "generated on ‘date +%Y-Ym-%d‘ by ‘whoami‘" at 1,1
set timestamp "generated on %Y-m-%d by ‘whoami‘"

Substitution of string variables as macros

Substitution of command line macros is disabled by default, but may be enabled using the set macros
command. If macro substitution is enabled, the character @ is used to trigger substitution of the current
value of a string variable into the command line. The text in the string variable may contain any number
of lexical elements. This allows string variables to be used as command line macros. Only string constants
may be expanded using this mechanism, not string-valued expressions. For example:

set macros

stylel = "lines 1t 4 1lw 2"

style2 = "points 1t 3 pt 5 ps 2"

rangel = "using 1:3"

range2 = "using 1:5"

plot "foo" @rangel with @stylel, "bar" @range2 with Q@style2

The line containing @ symbols is expanded on input, so that by the time it is executed the effect is identical
to having typed in full

40 gnuplot 4.6

plot "foo" using 1:3 with lines 1t 4 1w 2, \
"bar" using 1:5 with points 1t 3 pt 5 ps 2

The function exists() may be useful in connection with macro evaluation. The following example checks that
C can safely be expanded as the name of a user-defined variable:

C = "pi"
if (exists(C)) print C," = ", @C

Macro expansion does not occur inside either single or double quotes. However macro expansion does occur
inside backquotes.

Macro expansion is handled as the very first thing the interpreter does when looking at a new line of
commands and is only done once. Therefore, code like the following will execute correctly:

A = "c=1"
@A

but this line will not, since the macro is defined on the same line and will not be expanded in time

A = "c=1"; QA # will not expand to c=1

For execution of complete commands the evaluate command may also be handy.

String variables, macros, and command line substitution

The interaction of string variables, backquotes and macro substitution is somewhat complicated. Backquotes
do not block macro substitution, so

filename = "mydata.inp"

lines = ¢ wc --lines @filename | sed "s/ .x//"

results in the number of lines in mydata.inp being stored in the integer variable lines. And double quotes do
not block backquote substitution, so

mycomputer = "‘uname -n‘"

results in the string returned by the system command uname -n being stored in the string variable mycom-
puter.

However, macro substitution is not performed inside double quotes, so you cannot define a system command
as a macro and then use both macro and backquote substitution at the same time.

machine_id = "uname -n"
mycomputer = "‘@machine_id‘" # doesn’t work!!

This fails because the double quotes prevent @machine_id from being interpreted as a macro. To store a
system command as a macro and execute it later you must instead include the backquotes as part of the
macro itself. This is accomplished by defining the macro as shown below. Notice that the sprintf format
nests all three types of quotes.

machine_id = sprintf(’"‘uname -n‘"’)
mycomputer = @machine_id

Syntax

Options and any accompanying parameters are separated by spaces whereas lists and coordinates are sep-
arated by commas. Ranges are separated by colons and enclosed in brackets [], text and file names are
enclosed in quotes, and a few miscellaneous things are enclosed in parentheses.

Commas are used to separate coordinates on the set commands arrow, key, and label; the list of variables
being fitted (the list after the via keyword on the fit command); lists of discrete contours or the loop

gnuplot 4.6 41

parameters which specify them on the set cntrparam command; the arguments of the set commands
dgrid3d, dummy, isosamples, offsets, origin, samples, size, time, and view; lists of tics or the loop
parameters which specify them; the offsets for titles and axis labels; parametric functions to be used to
calculate the x, y, and z coordinates on the plot, replot and splot commands; and the complete sets of
keywords specifying individual plots (data sets or functions) on the plot, replot and splot commands.

Parentheses are used to delimit sets of explicit tics (as opposed to loop parameters) and to indicate compu-
tations in the using filter of the fit, plot, replot and splot commands.

(Parentheses and commas are also used as usual in function notation.)
Square brackets are used to delimit ranges given in set, plot or splot commands.

Colons are used to separate extrema in range specifications (whether they are given on set, plot or splot
commands) and to separate entries in the using filter of the plot, replot, splot and fit commands.

Semicolons are used to separate commands given on a single command line.

Curly braces are used in the syntax for enhanced text mode and to delimit blocks in if/then/else statements.
They are also used to denote complex numbers: {3,2} = 3 + 2i.

The EEPIC, Imagen, Uniplex, LaTeX, and TPIC drivers allow a newline to be specified by \\ in a single-
quoted string or \\\\ in a double-quoted string.

Quote Marks

Gnuplot uses three forms of quote marks for delimiting text strings, double-quote (ascii 34), single-quote
(ascii 39), and backquote (ascii 96).

Filenames may be entered with either single- or double-quotes. In this manual the command examples
generally single-quote filenames and double-quote other string tokens for clarity.

String constants and text strings used for labels, titles, or other plot elements may be enclosed in either
single quotes or double quotes. Further processing of the quoted text depends on the choice of quote marks.

Backslash processing of special characters like \n (newline) and \345 (octal character code) is performed for
double-quoted strings. In single-quoted strings, backslashes are just ordinary characters. To get a single-
quote (ascii 39) in a single-quoted string, it has to be doubled. Thus the strings "d\" s’ b\\" and ’d" s’’ b\’
are completely equivalent.

Text justification is the same for each line of a multi-line string. Thus the center-justified string

"This is the first line of text.\nThis is the second line."

will produce

This is the first line of text.
This is the second line.

but

’This is the first line of text.\nThis is the second line.’

will produce

This is the first line of text.\nThis is the second line.

Enhanced text processing is performed for both double-quoted text and single-quoted text, but only by
terminals supporting this mode. See enhanced text (p. .

Back-quotes are used to enclose system commands for substitution into the command line. See substitution

(p- 39).

Time/Date data

gnuplot supports the use of time and/or date information as input data. This feature is activated by the
commands set xdata time, set ydata time, etc.

42 gnuplot 4.6

Internally all times and dates are converted to the number of seconds from the year 2000. The command set
timefmt defines the format for all inputs: data files, ranges, tics, label positions — in short, anything that
accepts a data value must receive it in this format. Since only one input format can be in force at a given
time, all time/date quantities being input at the same time must be presented in the same format. Thus if
both x and y data in a file are time/date, they must be in the same format.

The conversion to and from seconds assumes Universal Time (which is the same as Greenwich Standard
Time). There is no provision for changing the time zone or for daylight savings. If all your data refer to the
same time zone (and are all either daylight or standard) you don’t need to worry about these things. But if
the absolute time is crucial for your application, you’ll need to convert to UT yourself.

Commands like show xrange will re-interpret the integer according to timefmt. If you change timefmt,
and then show the quantity again, it will be displayed in the new timefmt. For that matter, if you give
the deactivation command (like set xdata), the quantity will be shown in its numerical form.

The commands set format or set tics format define the format that will be used for tic labels, whether
or not the specified axis is time/date.

If time/date information is to be plotted from a file, the using option must be used on the plot or splot
command. These commands simply use white space to separate columns, but white space may be embedded
within the time/date string. If you use tabs as a separator, some trial-and-error may be necessary to discover
how your system treats them.

The time function can be used to get the current system time. This value can be converted to a date
string with the strftime function, or it can be used in conjunction with timecolumn to generate relative
time/date plots. The type of the argument determines what is returned. If the argument is an integer, time
returns the current time as an integer, in seconds from 1 Jan 2000. If the argument is real (or complex), the
result is real as well. The precision of the fractional (sub-second) part depends on your operating system.
If the argument is a string, it is assumed to be a format string, and it is passed to strftime to provide a
formatted time/date string.

The following example demonstrates time/date plotting.

Suppose the file "data" contains records like
03/21/95 10:00 6.02e23

This file can be plotted by

set xdata time

set timefmt "Y%m/%d/%y"

set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"

set timefmt "Ym/%d/%y %H:%M"

plot "data" using 1:3

which will produce xtic labels that look like "03/21".
See time_specifiers (p. [113).

Part 11
Plotting styles

There are many plotting styles available in gnuplot. They are listed alphabetically below. The commands
set style data and set style function change the default plotting style for subsequent plot and splot
commands.

You also have the option to specify the plot style explicitly as part of the plot or splot command. If you
want to mix plot styles within a single plot, you must specify the plot style for each component.

Example:

plot ’data’ with boxes, sin(x) with lines

|gnup10t 4.6 | 43

Each plot style has its own expected set of data entries in a data file. For example by default the lines style
expects either a single column of y values (with implicit x ordering) or a pair of columns with x in the first
and y in the second. For more information on how to fine-tune how columns in a file are interpreted as plot

data, see using (p. .

Boxerrorbars

The boxerrorbars style is only relevant to 2D data plotting. It is a combination of the boxes and yerror-
bars styles. It uses 3, 4, or 5 columns of data:

3 columns: x y ydelta

4 columns: x y ydelta xdelta # boxwidth !'= -2
4 columns: x y ylow yhigh # boxwidth == -2
5 columns: x y ylow yhigh xdelta

The boxwidth will come from the fourth column if the
y errors are given as "ydelta" and the boxwidth was
not previously set to -2.0 (set boxwidth -2.0) or from
the fifth column if the y errors are in the form of "ylow

yhigh". The special case boxwidth = -2.0 is for four-
column data with y errors in the form "ylow yhigh". In
this case the boxwidth will be calculated so that each H’T T

box touches the adjacent boxes. The width will also be LP Hu o1

with boxerrorbars 1

calculated in cases where three-column data are used.

An additional (4th, 5th or 6th) input column may be
used to provide variable (per-datapoint) color information (see linecolor (p. and rgbcolor variable
(p- [B5)). The error bar will be drawn in the same color as the border of the box.

The box height is determined from the y error in the same way as it is for the yerrorbars style — either
from y-ydelta to y+ydelta or from ylow to yhigh, depending on how many data columns are provided. See
also

errorbar demo.

Boxes

The boxes style is only relevant to 2D plotting. It draws
a box centered about the given x coordinate that extends
from the x axis (not from the graph border) to the given
y coordinate. It uses 2 or 3 columns of basic data. Addi-
tional input columns may be used to provide information
such as variable line or fill color (see rgbcolor variable

(p- B3)).

2 columns: x vy

with boxes m—

3 columns: x y x_width

The width of the box is obtained in one of three ways. If the input data has a third column, this will be
used to set the width of the box. If not, if a width has been set using the set boxwidth command, this
will be used. If neither of these is available, the width of each box will be calculated automatically so that
it touches the adjacent boxes.

The interior of the boxes is drawn according to the current fillstyle. See set style fill (p. [147)) for details.
Alternatively a new fillstyle may be specified in the plot command.

For fillstyle empty the box is not filled.

http://www.gnuplot.info/demo/mgr.html

44 gnuplot 4.6

For fillstyle solid the box is filled with a solid rectangle of the current drawing color. There is an optional
parameter <density> that controls the fill density; it runs from 0 (background color) to 1 (current drawing
color).

For fillstyle pattern the box is filled in the current drawing color with a pattern, if supported by the terminal
driver.

Examples:

To plot a data file with solid filled boxes with a small vertical space separating them (bargraph):

set boxwidth 0.9 relative
set style fill solid 1.0
plot ’file.dat’ with boxes

To plot a sine and a cosine curve in pattern-filled boxes style:

set style fill pattern
plot sin(x) with boxes, cos(x) with boxes

The sin plot will use pattern 0; the cos plot will use pattern 1. Any additional plots would cycle through
the patterns supported by the terminal driver.

To specify explicit fillstyles for each dataset:

plot ’filel’ with boxes fs solid 0.25, \
’file2’ with boxes fs solid 0.50, \
’file3’ with boxes fs solid 0.75, \
’file4’ with boxes fill pattern 1, \
’fileb’ with boxes fill empty

Boxplot

Boxplots are a common way to represent a statistical dis- 160 -

tribution of values. Quartile boundaries are determined 140 - .

such that 1/4 of the points have a value equal or less 120 1

than the first quartile boundary, 1/2 of the points have 100

a value equal or less than the second quartile (median) 80 |- . .
value, etc. A box is drawn around the region between 60 . :
the first and third quartiles, with a horizontal line at 40 b :
the median value. Whiskers extend from the box to 20 + % %
user-specified limits. Points that lie outside these limits 0F

are drawn individually. A B

Examples

Place a boxplot at x coordinate 1.0 representing the y values in column 5
plot ’data’ using (1.0):5

Same plot but suppress outliers and force the width of the boxplot to 0.3
set style boxplot nooutliers
plot ’data’ using (1.0):5:(0.3)

By default only one boxplot is produced that represents all y values from the second column of the using
specification. However, an additional (fourth) colunm can be added to the specification. If present, the
values of that column will be interpreted as the discrete levels of a factor variable. As many boxplots will be
drawn as there are levels in the factor variable. The separation between these boxplots is 1.0 by default, but
it can be changed by set style boxplot separation. By default, the value of the factor variable is shown
as a tic label below (or above) each boxplot.

Example

gnuplot 4.6 45

Suppose that column 2 of ’data’ contains either "control" or "treatment"
The following example produces two boxplots, one for each level of the
factor

plot ’data’ using (1.0):5:(0):2

The default width of the box can be set via set boxwidth <width> or may be specified as an optional
3rd column in the using clause of the plot command. The first and third columns (x coordinate and width)
are normally provided as constants rather than as data columns.

By default the whiskers extend from the ends of the box to the most distant point whose y value lies within

1.5 times the interquartile range. By default outliers are drawn as circles (point type 7). The width of the
bars at the end of the whiskers may be controlled using set bars.

These default properties may be changed using the set style boxplot command. See set style boxplot

(p. [146)), bars (p. [99)), boxwidth (p. [101)), fillstyle (p. [147)), candlesticks (p. [45).

Boxxyerrorbars

The boxxyerrorbars style is only relevant to 2D data
plotting. It is similar to the xyerrorbars style ex-
cept that it draws rectangular areas rather than simple
crosses. It uses either 4 or 6 basic columns of input data.

Additional input columns may be used to provide infor- H |:||:| H D |:|

with boxxyerrorbars 1

mation such as variable line or fill color (see rgbcolor

variable (p. [35])). DD

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

]
]

The box width and height are determined from the x and y errors in the same way as they are for the
xyerrorbars style — either from xlow to xhigh and from ylow to yhigh, or from x-xdelta to x+xdelta and
from y-ydelta to y+ydelta, depending on how many data columns are provided.

An additional (5th or 7th) input column may be used to provide variable (per-datapoint) color information
(see linecolor (p. and rgbcolor variable (p. [35))).

The interior of the boxes is drawn according to the current fillstyle. See set style fill (p.[147]) and boxes
(p- for details. Alternatively a new fillstyle may be specified in the plot command.

Candlesticks

The candlesticks style can be used for 2D data plotting
of financial data or for generating box-and-whisker plots
of statistical data. The symbol is a rectangular box,
centered horizontally at the x coordinate and limited
vertically by the opening and closing prices. A vertical i] ﬁg H D ?

with candlesticks 1

line segment at the x coordinate extends up from the
top of the rectangle to the high price and another down @
to the low. The vertical line will be unchanged if the ﬁg
low and high prices are interchanged.

Five columns of basic data are required:

financial data: date open low high close
whisker plot: x box_min whisker_min whisker_high box_high

The width of the rectangle can be controlled by the set boxwidth command. For backwards compatibility
with earlier gnuplot versions, when the boxwidth parameter has not been set then the width of the candlestick
rectangle is controlled by set bars <width>.

46 gnuplot 4.6

Alternatively, an explicit width for each box-and-whiskers grouping may be specified in an optional 6th
column of data. The width must be given in the same units as the x coordinate.

An additional (6th, or 7th if the 6th column is used for width data) input column may be used to provide
variable (per-datapoint) color information (see linecolor (p. and rgbcolor variable (p. [35)).

By default the vertical line segments have no crossbars at the top and bottom. If you want crossbars, which
are typically used for box-and-whisker plots, then add the keyword whiskerbars to the plot command. By
default these whiskerbars extend the full horizontal width of the candlestick, but you can modify this by
specifying a fraction of the full width.

The usual convention for financial data is that the rectangle is empty if (open < close) and solid fill if (close
< open). This is the behavior you will get if the current fillstyle is set to "empty". See fillstyle (p. .
If you set the fillstyle to solid or pattern, then this will be used for all boxes independent of open and close
values. See also set bars (p. and financebars (p. [49)). See also the

candlestick
and

finance
demos.

Note: To place additional symbols, such as the median value, on a box-and-whisker plot requires additional
plot commands as in this example:

Data columns:X Min 1stQuartile Median 3rdQuartile Max

set bars 4.0

set style fill empty

plot ’stat.dat’ using 1:3:2:6:5 with candlesticks title ’Quartiles’, \
7 using 1:4:4:4:4 with candlesticks 1t -1 notitle

Plot with crossbars on the whiskers, crossbars are 50% of full width
plot ’stat.dat’ using 1:3:2:6:5 with candlesticks whiskerbars 0.5

See set boxwidth (p. [101)), set bars (p. [99)), set style fill (p.[147)), and boxplot (p. [44).

Circles

The circles style plots a circle with an explicit radius s
at each data point. If three columns of data are present,
they are interpreted as x, y, radius. The radius is always
interpreted in the units of the plot’s horizontal axis (x

20

15 ¢

or x2). The scale on y and the aspect ratio of the plot L0 ¢
are both ignored. If only two columns are present, the 05 I
radius is taken from set style circle. In this case the 00 |

radius may be given in graph or screen coordinates. By
default a full circle will be drawn. It is possible to plot
arc segments instead of full circles by specifying a start
and end angle in the 4th and 5th columns. An optional
4th or 6th column can specify per-circle color. The start and end angles of the circle segments must be
specified in degrees.

-0.5 -

-1.0
-25 -20 -1.5 -1.0 -05 0.0 05 1.0 15

Examples:

draws circles whose area is proportional to the value in column 3
set style fill transparent solid 0.2 noborder
plot ’data’ using 1:2:(sqrt($3)) with circles, \

’data’ using 1:2 with linespoints

draws Pac-men instead of circles
plot ’data’ using 1:2:(10):(40):(320) with circles

http://gnuplot.sourceforge.net/demo/candlesticks.html
http://gnuplot.sourceforge.net/demo/finance.html

gnuplot 4.6 47

draw a pie chart with inline data

set xrange [-15:15]

set style fill transparent solid 0.9 noborder
plot ’-’ using 1:2:3:4:5:6 with circles lc var

0 0 5 0 30 1
0 0 5 30 70 2
0 0 5 70 120 3
0 0 5 120 230 4
0 0 5 230 360 5
e

The result is similar to using a points plot with variable size points and pointstyle 7, except that the circles
will scale with the x axis range. See also set object circle (p. [131]) and fillstyle (p. [147]).

Ellipses

The ellipses style plots an ellipse at each data point.
This style is only relevant for 2D plotting. Each ellipse with ellipses <=
is described in terms of its center, major and minor di-
ameters, and the angle between its major diameter and
the x axis.

2 columns: x y

3 columns: x y major_diam

4 columns: x y major_diam minor_diam

5 columns: x y major_diam minor_diam angle

If only two input columns are present, they are taken as the coordinates of the centers, and the ellipses will
be drawn with the default extent (see set style ellipse (p.) The orientation of the ellipse, which is
defined as the angle between the major diameter and the plot’s x axis, is taken from the default ellipse style
(see set style ellipse (p. [151)). If three input columns are provided, the third column is used for both
diameters. The orientation angle defaults to zero. If four columns are present, they are interpreted as x, vy,
major diameter, minor diameter. Note that these are diameters, not radii. An optional 5th column may be
used to specify the orientation angle in degrees. The ellipses will also be drawn with their default extent if
either of the supplied diameters in the 3-4-5 column form is negative.

In all of the above cases, optional variable color data may be given in an additional last (3th, 4th, 5th or
6th) column. See colorspec (p. for further information.

By default, the major diameter is interpreted in the units of the plot’s horizontal axis (x or x2) while the
minor diameter in that of the vertical (y or y2). This implies that if the x and y axis scales are not equal,
then the major/minor diameter ratio will no longer be correct after rotation. This behavior can be changed
with the units keyword, however.

There are three alternatives: if units xy is included in the plot specification, the axes will be scaled as
described above. units xx ensures that both diameters are interpreted in units of the x axis, while units
yy means that both diameters are interpreted in units of the y axis. In the latter two cases the ellipses will
have the correct aspect ratio, even if the plot is resized.

If units is omitted, the default setting will be used, which is equivalent to units xy. This can be redefined
by set style ellipse.

Example (draws ellipses, cycling through the available line types):
plot ’data’ using 1:2:3:4:(0):0 with ellipses

See also set object ellipse (p. [131)), set style ellipse (p.[151]) and fillstyle (p. [147]).

Dots

48 gnuplot 4.6

The dots style plots a tiny dot at each point; this is
useful for scatter plots with many points. Either 1 or 2
columns of input data are required in 2D. Three columns
are required in 3D.

For some terminals (post, pdf) the size of the dot can
be controlled by changing the linewidth.

1 column y # x is row number
2 columns: x vy
3 columns: x y z # 3D only (splot)

Filledcurves

The filledcurves style is only relevant to 2D plotting.

Three variants are possible. The first two variants re- with filledcurves =
quire either a function or two columns of input data, and below ==
may be further modified by the options listed below. curve J

Syntax:

plot ... with filledcurves [option]

where the option can be one of the following

[closed | {above | below}
{x1 | x2 | y1 | y2 | r}[=<a>] | xy=<x>,<y>]

The first variant, closed, treats the curve itself as a closed polygon. This is the default if there are two
columns of input data.

The second variant is to fill the area between the curve and a given axis, a horizontal or vertical line, or a
point.

filledcurves closed ... just filled closed curve,

filledcurves x1 ... x1 axis,

filledcurves x2 ... x2 axis, etc for yl and y2 axes,

filledcurves y1=0 ... line y=0 (at yl axis) ie parallel to x1 axis,
filledcurves y2=42 ... line y=42 (at y2 axis) ie parallel to x2, etc,
filledcurves xy=10,20 ... point 10,20 of x1,yl axes (arc-like shape).

filledcurves above r=1.5 the area of a polar plot outside radius 1.5

The third variant requires three columns of input data: the x coordinate and two y coordinates corresponding
to two curves sampled at the same set of x coordinates; the area between the two curves is filled. This is the
default if there are three or more columns of input data.

3 columns: x yl y2

Example of filling the area between two input curves.

fill between curves demo.

plot ’data’ using 1:2:3 with filledcurves

The above and below options apply both to commands of the form

. filledcurves above {x1|x2|yll|y2|r}=<val>

and to commands of the form

. using 1:2:3 with filledcurves below

http://www.gnuplot.info/demo/fillbetween.html

gnuplot 4.6 49

In either case the option limits the filled area to one side of the bounding line or curve.

Note: Not all terminal types support this plotting mode.

Zooming a filled curve drawn from a datafile may produce empty or incorrect areas because gnuplot is
clipping points and lines, and not areas.

If the values of <a>, <x>, <y> are out of the drawing boundary, then they are moved to the graph
boundary. Then the actually filled area in the case of option xy=<x>,<y> will depend on xrange and
yrange.

Financebars

The financebars style is only relevant for 2D data plotting of financial data. It requires 1 x coordinate
(usually a date) and 4 y values (prices).

5 columns: date open 1low high close

An additional (6th) input column may be used to provide variable (per-record) color information (see line-

color (p. and rgbcolor variable (p. [35)).

The symbol is a vertical line segment, located horizon-
tally at the x coordinate and limited vertically by the
high and low prices. A horizontal tic on the left marks
the opening price and one on the right marks the closing
price. The length of these tics may be changed by set j $ r J‘ {

with financebars

bars. The symbol will be unchanged if the high and
low prices are interchanged. See set bars (p. and j
candlesticks (p. [45]), and also the j

finance demo.

F'steps

The fsteps style is only relevant to 2D plotting. It con-
nects consecutive points with two line segments: the first
from (x1,y1) to (x1,y2) and the second from (x1,y2) to
(x2,y2). The input column requires are the same as for
plot styles lines and points. The difference between
fsteps and steps is that fsteps traces first the change
in y and then the change in x. steps traces first the
change in x and then the change in y.

See also \—|_,—‘

steps demo.

with fsteps

Fillsteps

The fillsteps style is exactly like steps except that the area between the curve and y=0 is filled in the
current fill style. See steps (p. .

Histeps

http://www.gnuplot.info/demo/finance.html
http://www.gnuplot.info/demo/steps.html

50 gnuplot 4.6

The histeps style is only relevant to 2D plotting. It
is intended for plotting histograms. Y-values are as-
sumed to be centered at the x-values; the point at x1 is
represented as a horizontal line from ((x0+x1)/2,y1) to
((x14x2)/2,y1). The lines representing the end points
are extended so that the step is centered on at x. Adja-
cent points are connected by a vertical line at their aver-
age X, that is, from ((x14x2)/2,y1) to ((x1+x2)/2,y2).
The input column requires are the same as for plot styles \—_,—‘
lines and points.

with histeps

If autoscale is in effect, it selects the xrange from the data rather than the steps, so the end points will
appear only half as wide as the others. See also

steps demo.

histeps is only a plotting style; gnuplot does not have the ability to create bins and determine their
population from some data set.

Histograms

The histograms style is only relevant to 2D plotting. It produces a bar chart from a sequence of parallel
data columns. Each element of the plot command must specify a single input data source (e.g. one column of
the input file), possibly with associated tic values or key titles. Four styles of histogram layout are currently
supported.

set style histogram clustered {gap <gapsize>}

set style histogram errorbars {gap <gapsize>} {<linewidth>}
set style histogram rowstacked

set style histogram columnstacked

The default style corresponds to set style histogram clustered gap 2. In this style, each set of parallel
data values is collected into a group of boxes clustered at the x-axis coordinate corresponding to their
sequential position (row #) in the selected datafile columns. Thus if <n> datacolumns are selected, the first
cluster is centered about x=1, and contains <n> boxes whose heights are taken from the first entry in the
corresponding <n> data columns. This is followed by a gap and then a second cluster of boxes centered
about x=2 corresponding to the second entry in the respective data columns, and so on. The default gap
width of 2 indicates that the empty space between clusters is equivalent to the width of 2 boxes. All boxes
derived from any one column are given the same fill color and/or pattern (see set style fill (p.)

Each cluster of boxes is derived from a single row of the input data file. It is common in such input files that
the first element of each row is a label. Labels from this column may be placed along the x-axis underneath
the appropriate cluster of boxes with the xticlabels option to using.

The errorbars style is very similar to the clustered style, except that it requires additional columns of
input for each entry. The first column holds the height (y value) of that box, exactly as for the clustered
style.

2 columns: y yerr bar extends from y-yerr to yt+err

3 columns: y ymin yman bar extends from ymin to ymax

The appearance of the error bars is controlled by the current value of set bars and by the optional
<linewidth> specification.

Two styles of stacked histogram are supported, chosen by the command set style histogram
{rowstacked|columnstacked}. In these styles the data values from the selected columns are collected
into stacks of boxes. Positive values stack upwards from y=0; negative values stack downwards. Mixed
positive and negative values will produce both an upward stack and a downward stack. The default stacking
mode is rowstacked.

The rowstacked style places a box resting on the x-axis for each data value in the first selected column;
the first data value results in a box a x=1, the second at x=2, and so on. Boxes corresponding to the second

http://www.gnuplot.info/demo/steps.html

gnuplot 4.6 o1

and subsequent data columns are layered on top of these, resulting in a stack of boxes at x=1 representing
the first data value from each column, a stack of boxes at x=2 representing the second data value from each
column, and so on. All boxes derived from any one column are given the same fill color and/or pattern (see

set style fill (p. [147)).

The columnstacked style is similar, except that each stack of boxes is built up from a single data column.
Each data value from the first specified column yields a box in the stack at x=1, each data value from the
second specified column yields a box in the stack at x=2, and so on. In this style the color of each box is
taken from the row number, rather than the column number, of the corresponding data field.

Box widths may be modified using the set boxwidth command. Box fill styles may be set using the set
style fill command.

Histograms always use the x1 axis, but may use either y1 or y2. If a plot contains both histograms and other
plot styles, the non-histogram plot elements may use either the x1 or the x2 axis.

Examples:

Suppose that the input file contains data values in

columns 2, 4, 6, ... and error estimates in columns 3, L ClassB — |
ClassA s

5, 7, ... This example plots the values in columns 2 and
4 as a histogram of clustered boxes (the default style).
Because we use iteration in the plot command, any num-
ber of data columns can be handled in a single command.

See iteration (p. [70).

set boxwidth 0.9 relative
set style data histograms

S = N W kR Ul DDN 0 ©
T
1

set style histogram cluster
set style fill solid 1.0 border 1t -1
plot for [COL=2:4:2] ’file.dat’ using COL

This will produce a plot with clusters of two boxes (vertical bars) centered at each integral value on the
x axis. If the first column of the input file contains labels, they may be placed along the x-axis using the
variant command

plot for [COL=2:4:2] ’file.dat’ using COL:xticlabels(1)

If the file contains both magnitude and range informa- Histogram with error bars

tion for each value, then error bars can be added to the L BL—1 |
plot. The following commands will add error bars ex-
tending from (y-<error>) to (y+<error>), capped by
horizontal bar ends drawn the same width as the box
itself. The error bars and bar ends are drawn with
linewidth 2, using the border linetype from the current

fill style.

_
o

set bars fullwidth

set style fill solid 1 border 1t -1

set style histogram errorbars gap 2 lw 2
plot for [COL=2:4:2] ’file.dat’ using COL:COL+1

S = N W kA~ U1 DO N 0 ©
T
1

To plot the same data as a rowstacked histogram. Just to be different, this example lists the separate
columns explicitly rather than using iteration.

set style histogram rowstacked
plot ’file.dat’ using 2, ’’ using 4:xtic(1)

52 |gnup10t 4.6 |

This will produce a plot in which each vertical bar cor- 10 Rowstacked
responds to one row of data. Each vertical bar contains 81:55552 [E—
a stack of two segments, corresponding in height to the 8 g

values found in columns 2 and 4 of the datafile.

Finally, the commands

set style histogram columnstacked
plot ’file.dat’ using 2, ’’ using 4

will produce two vertical stacks, one for each column of 18 Columnstacked
data. The stack at x=1 will contain a box for each entry 16 - i
in column 2 of the datafile. The stack at x=2 will contain 14 L i
a box for each parallel entry in column 4 of the datafile. 12 - .
Because this interchanges gnuplot’s usual interpretation 10 - .
of input rows and columns, the specification of key titles 8 - q
and x-axis tic labels must also be modified accordingly. 6 7
See the comments given below. 4r 7
set style histogram columnstacked 20 _ i
plot ’’ u 5:key(1) # uses first column to genetiate key titdess

plot ’’ u 5 title columnhead # uses first row to generate xtic labels

Note that the two examples just given present exactly the same data values, but in different formats.

Newhistogram

Syntax:
newhistogram {"<title>"} {1t <linetype>} {fs <fillstyle>} {at <x-coord>}

More than one set of histograms can appear in a single plot. In this case you can force a gap between them,
and a separate label for each set, by using the newhistogram command. For example
set style histogram cluster
plot newhistogram "Set A", ’a’ using 1, ’’ using 2, ’’ using 3, \
newhistogram "Set B", ’b’ using 1, ’’ using 2, ’’ using 3

The labels "Set A" and "Set B" will appear beneath the respective sets of histograms, under the overall x
axis label.

The newhistogram command can also be used to force histogram coloring to begin with a specific color
(linetype). By default colors will continue to increment successively even across histogram boundaries. Here
is an example using the same coloring for multiple histograms
plot newhistogram "Set A" 1t 4, ’a’ using 1, ’’ using 2, ’’ using 3, \
newhistogram "Set B" 1t 4, ’b’ using 1, ’’ using 2, ’’ using 3

Similarly you can force the next histogram to begin with a specified fillstyle. If the fillstyle is set to pattern,
then the pattern used for filling will be incremented automatically.

The at <x-coord> option sets the x coordinate position

T T T
of the following histogram to <x-coord>. For example L ClassA mmm—" |
ClassB 1
set style histogram cluster .
. ClassA
set style data histogram ClassB —— |

set style fill solid 1.0 border -1
set xtic 1 offset character 0,0.3
plot newhistogram "Set A", \

O = N W kA U1 N 0 ©

’file.dat’ u 1t 1, >> u2t 2, \
newhistogram "Set B" at 8, \
’file.dat’ u 2t 2, 2> u2t 2 2 3 4 5 6 7 8 9 10 11 12

1
Set A Set B

will position the second histogram to start at x=8.

|gnup10t 4.6 | 93

Automated iteration over multiple columns

If you want to create a histogram from many columns of data in a single file, it is very convenient to use
the plot iteration feature. See iteration (p. [70]). For example, to create stacked histograms of the data in
columns 3 through 8

set style histogram columnstacked

plot for [i=3:8] "datafile" using i title columnhead

Image

The image, rgbimage, and rgbalpha plotting styles all project a uniformly sampled grid of data values
onto a plane in either 2D or 3D. The input data may be an actual bitmapped image, perhaps converted from
a standard format such as PNG, or a simple array of numerical values.

This figure illustrates generation of a heat map from an 2D Heat map from in-line array of values
array of scalar values. The current palette is used to map 0 1 2 3 4
each value onto the color assigned to the corresponding
pixel.

lot ’-’ matrix with image

= O N B
N OO W
D~ O -
w o = O

o ©O O O N 1o

Each pixel (data point) of the input 2D image will be-
come a rectangle or parallelipiped in the plot. The co-
ordinates of each data point will determine the center
of the parallelipiped. That is, an M x N set of data
will form an image with M x N pixels. This is differ-
ent from the pm3d plotting style, where an M x N set
of data will form a surface of (M-1) x (N-1) elements.
The scan directions for a binary image data grid can be
further controlled by additional keywords. See binary

keywords flipx (p. , keywords center (p. ,
and keywords rotate (p. .

RGB image mapped onto a plane in 3D

Image data can be scaled to fill a particular rectangle
within a 2D plot coordinate system by specifying the x
and y extent of each pixel. See binary keywords dx
(p. and dy (p. [76)). To generate the figure at the 150
right, the same input image was placed multiple times,

each with a specified dx, dy, and origin. The input PNG 100
image of a building is 50x128 pixels. The tall building

was drawn by mapping this using dx=0.5 dy=1.5. The 50
short building used a mapping dx=0.5 dy=0.35.

Rescaled image used as plot element

200 200

Building Heights
by Neighborhood

150

100

50

o I T
The image style handles input pixels containing a Downtown S NE Suburbs

grayscale or color palette value. Thus 2D plots (plot command) require 3 columns of data (x,y,value),
while 3D plots (splot command) require 4 columns of data (x,y,z,value).

0

The rgbimage style handles input pixels that are described by three separate values for the red, green,
and blue components. Thus 5D data (x,y,r,g,b) is needed for plot and 6D data (x,y,z,r,g,b) for splot. The
individual red, green, and blue components are assumed to lie in the range [0:255].

The rgbalpha style handles input pixels that contain alpha channel (transparency) information in addition to
the red, green, and blue components. Thus 6D data (x,y,r,g,b,a) is needed for plot and 7D data (x,y,z,r,g,b,a)
for splot. The r, g, b, and alpha components are assumed to lie in the range [0:255].

54 gnuplot 4.6

Transparency

The rgbalpha plotting style assumes that each pixel of input data contains an alpha value in the range
[0:255]. A pixel with alpha = 0 is purely transparent and does not alter the underlying contents of the plot.
A pixel with alpha = 255 is purely opaque. All terminal types can handle these two extreme cases. A pixel
with 0 < alpha < 255 is partially transparent. Only a few terminal types can handle this correctly; other
terminals will approximate this by treating alpha as being either 0 or 255.

Image failsafe

Some terminal drivers provide code to optimize rendering of image data within a rectangular 2D area.
However this code is known to be imperfect. This optimized code may be disabled by using the keyword
failsafe. E.g.

plot ’data’ with image failsafe

Impulses

The impulses style displays a vertical line from y=0
to the y value of each point (2D) or from z=0 to the z
value of each point (3D). Note that the y or z values may
be negative. Data from additional columns can be used
to control the color of each impulse. To use this style

with impulses

effectively in 3D plots, it is useful to choose thick lines
(linewidth > 1). This approximates a 3D bar chart.

\ \
1 column: y ‘
2 columns: y # line from [x,0] to [x,yl (2D)
y z # line from [x,y,0] to [x,y,z] (3D)

X
3 columns: x

Labels

The labels style reads coordinates and text from a data
file and places the text string at the corresponding 2D
or 3D position. 3 or 4 input columns of basic data are
required. Additional input columns may be used to pro-
vide information such as variable font size or text color
(see rgbcolor variable (p. [35)).

3 columns: x y string # 2D version

4 columns: x y z string # 3D version

command options (see set label (p.) The example below generates a 2D plot with text labels
constructed from the city whose name is taken from column 1 of the input file, and whose geographic
coordinates are in columns 4 and 5. The font size is calculated from the population size in column 3.
CityName(String,Size) = sprintf("{/=%d %s}", Scale(Size), String)

plot ’cities.dat’ using 5:4:(CityName(stringcolumn(1),$3)) with labels

If we didn’t adjust the font size to a different size for each city name, the command would be much simpler:
plot ’cities.dat’ using 5:4:1 with labels font "Times,8"

The labels style can also be used in 3D plots. In this case four input column specifiers are required,
corresponding to X Y Z and text.
splot ’datafile’ using 1:2:3:4 with labels

See also datastrings (p. [23)), set style data (p. [147).

gnuplot 4.6

95

Lines

The lines style connects adjacent points with straight
line segments. It may be used in either 2D or 3D plots.
The basic form requires 1, 2, or 3 columns of input data.
Additional input columns may be used to provide infor-
mation such as variable line color (see rgbcolor vari-

able (p. [35)).
2D form

1 column: y
2 columns: x vy

3D form

1 column: z
3 columns: x y =z

implicit x from row numb

with lines

implicit x from row, y from index

See also linetype (p. [123)), linewidth (p. , and linestyle (p. [149).

Linespoints

The linespoints style connects adjacent points with
straight line segments and then goes back to draw a
small symbol at each point. The command set point-
size may be used to change the default size of the points.
1 or 2 columns of basic input data are required in 2D
plots; 1 or 3 columns are required if 3D plots. See style
lines (p. . Additional input columns may be used
to provide information such as variable point size or line
color.

The pointinterval (short form pi) property of the line-

with linespoints ——
[pointinterval -2 —{-}—

/

b

type can be used to control whether or not every point in the plot is given a symbol. For example, 'with lp
pi 3’ will draw line segments through every data point, but will only place a symbol on every 3rd point. A
negative value for pointinterval will erase the portion of line segment that passes underneath the symbol.
The size of the erased portion is controlled by set pointintervalbox.

linespoints may be abbreviated lp.

Points

The points style displays a small symbol at each point.
The command set pointsize may be used to change the
default size of the points. 1 or 2 columns of basic input
data are required in 2D plots; 1 or 3 columns are required
in 3D plots. See style lines (p. [55)). Additional input
columns may be used to provide information such as
variable point size or variable point color.

Polar

O o o

with points ps variable ©

©O)
©) ©)

56 gnuplot 4.6

Polar plots are not really a separate plot style but
are listed here for completeness. The option set po-
lar tells gnuplot to interpret input 2D coordinates as
<angle>,<radius> rather than <x>,<y>. Many, but
not all, 2D plotting styles work in polar mode. The fig-
ure shows a combination of plot styles lines and filled-

curves. See set polar (p.[142)), set rrange (p.[144)),
set size square (p.[144)).

bounding radius 2.5
3.+sin(t)*cos(5*t) —

Steps

The steps style is only relevant to 2D plotting. It con-
nects consecutive points with two line segments: the first
from (x1,y1l) to (x2,yl) and the second from (x2,y1) to
(x2,y2). The input column requires are the same as for
plot styles lines and points. The difference between
fsteps and steps is that fsteps traces first the change
in y and then the change in x. steps traces first the
change in x and then the change in y. To fill the area

between the curve and the baseline at y=0, use fillsteps. I—‘_,—li

See also

with fillsteps
with steps

steps demo.

Rgbalpha
See image (p. .

Rgbimage
See image (p. .

Vectors

The 2D vectors style draws a vector from (x,y) to (x+xdelta,y+ydelta). The 3D vectors style is similar,
but requires six columns of basic data. A small arrowhead is drawn at the end of each vector.

4 columns: x y xdelta ydelta
6 columns: x y 2z xdelta ydelta zdelta

In both cases, an additional input column (5th in 2D, 7th in 3D) may be used to provide variable (per-
datapoint) color information. (see linecolor (p. and rgbcolor variable (p. [35)).

splot with vectors is supported only for set mapping cartesian.

The keywords "with vectors" may be followed by an in-line arrow style specifications, a reference to a
predefined arrow style, or a request to read the index of the desired arrow style for each vector from a
separate column. Note: If you choose "arrowstyle variable" it will fill in all arrow properties at the time the
corresponding vector is drawn; you cannot mix this keyword with other line or arrow style qualifiers in the
plot command.

plot ... with vectors filled heads
plot ... with vectors arrowstyle 3
plot ... using 1:2:3:4:5 with vectors arrowstyle variable

http://www.gnuplot.info/demo/steps.html

gnuplot 4.6 57

See arrowstyle (p. [145)) for more details.
Example:

plot ’file.dat’ using 1:2:3:4 with vectors head filled 1t 2
splot ’file.dat’ using 1:2:3:(1):(1):(1) with vectors filled head lw 2

set clip one and set clip two affect vectors drawn in 2D. Please see set clip (p. [L02)) and arrowstyle

(p- [145).

Xerrorbars

The xerrorbars style is only relevant to 2D data plots.
xerrorbars is like points, except that a horizontal er-
ror bar is also drawn. At each point (x,y), a line is
drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to
(x+xdelta,y), depending on how many data columns are "

provided. A tic mark is placed at the ends of the error =
bar (unless set bars is used — see set bars (p. for T e
details). The basic style requires either 3 or 4 columns: —— H

with xerrorbars —+—

3 columns: x y xdelta
4 columns: x y xlow xhigh

An additional input column (4th or 5th) may be used to provide information such as variable point color.

Xyerrorbars

The xyerrorbars style is only relevant to 2D data plots.
xyerrorbars is like points, except that horizontal and
vertical error bars are also drawn. At each point (x,y),
lines are drawn from (x,y-ydelta) to (x,y+ydelta) and

from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow) to
Fp s
T

with xyerrorbars —+—

(x,yhigh) and from (xlow,y) to (xhigh,y), depending
upon the number of data columns provided. A tic mark
is placed at the ends of the error bar (unless set bars is Jﬁ

used — see set bars (p. for details). Either 4 or 6
input columns are required.

+
+

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

If data are provided in an unsupported mixed form, the using filter on the plot command should be used

to set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then you
can use

plot ’data’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

An additional input column (5th or 7th) may be used to provide variable (per-datapoint) color information.

Yerrorbars

58 gnuplot 4.6

The yerrorbars (or errorbars) style is only relevant
to 2D data plots. yerrorbars is like points, except
that a vertical error bar is also drawn. At each point
(x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta)
or from (x,ylow) to (x,yhigh), depending on how many I 1 % } l

with yerrorbars ——

data columns are provided. A tic mark is placed at the
ends of the error bar (unless set bars is used — see set 1
bars (p. for details). Either 3 or 4 input columns l

are required.

3 columns: x y ydelta
4 columns: x y ylow yhigh

An additional input column (4th or 5th) may be used to provide information such as variable point color.
See also

errorbar demo.

Xerrorlines

The xerrorlines style is only relevant to 2D data plots.
xerrorlines is like linespoints, except that a horizontal
error line is also drawn. At each point (x,y), a line is
drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to
(x+xdelta,y), depending on how many data columns are
provided. A tic mark is placed at the ends of the error
bar (unless set bars is used — see set bars (p. for
details). The basic style requires either 3 or 4 columus:

with xerrorlines —+—

3 columns: x y xdelta
4 columns: x y xlow <xhigh

An additional input column (4th or 5th) may be used to provide information such as variable point color.

Xyerrorlines

The xyerrorlines style is only relevant to 2D data plots.
xyerrorlines is like linespoints, except that horizontal
and vertical error bars are also drawn. At each point
(x,y), lines are drawn from (x,y-ydelta) to (x,y+ydelta)
and from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow)
to (x,yhigh) and from (xlow,y) to (xhigh,y), depending
upon the number of data columns provided. A tic mark
is placed at the ends of the error bar (unless set bars is
used — see set bars (p. for details). Either 4 or 6
input columns are required.

with xyerrorlines H+—

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

If data are provided in an unsupported mixed form, the using filter on the plot command should be used
to set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then you
can use

plot ’data’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

An additional input column (5th or 7th) may be used to provide variable (per-datapoint) color information.

http://www.gnuplot.info/demo/mgr.html

gnuplot 4.6

99

Yerrorlines

The yerrorlines (or errorlines) style is only relevant to
2D data plots. yerrorlines is like linespoints, except
that a vertical error line is also drawn. At each point
(x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta)
or from (x,ylow) to (x,yhigh), depending on how many
data columns are provided. A tic mark is placed at the
ends of the error bar (see set bars (p. for details).
Either 3 or 4 input columns are required.

3 columns: x y ydelta
4 columns: x y ylow yhigh

with yerrorlines —+—

An additional input column (4th or 5th) may be used to provide information such as variable point color.

See also

errorbar demo.

3D (surface) plots

Surface plots are generated using the splot command
rather than the plot command. The style with lines
draws a surface made from a grid of lines. Solid sur-
faces can be drawn using the style with pm3d. Usually
the surface is displayed at some arbitrary viewing angle,
such that it clearly represents a 3D surface. In this case
the X, Y, and Z axes are all visible in the plot. The
illusion of 3D is enhanced by choosing hidden line re-
moval or depth-sorted surface elements. See hidden3d

(p. [115)) and the depthorder (p.|[135]) option of set
pm3d (p. [134)).

The splot command can also calculate and draw contour
lines corresponding to constant Z values. These contour
lines may be drawn onto the surface itself, or projected
onto the XY plane. See set contour (p. [105).

2D projection (set view map)

3D surface plot with hidden line removal

77
L/

N
NN\
SN

=&
7770
TR
SN/
Ry \‘VV”'"
‘%’0’,’,’,1
&

NN
23

NNS
N

http://www.gnuplot.info/demo/mgr.html

60 gnuplot 4.6

An important special case of the splot command is to
map the Z coordinate onto a 2D surface by projecting projected contours using 'set view map’
the plot along the Z axis. See set view map (p. .
This plot mode can be used to generate contour plots

)
and heat maps. | @ @

=\

Part III

Y axis

Commands

This section lists the commands acceptable to gnuplot in alphabetical order. Printed versions of this
document contain all commands; the text available interactively may not be complete. Indeed, on some
systems there may be no commands at all listed under this heading.

Note that in most cases unambiguous abbreviations for command names and their options are permissible,
ie, "p f(x) w li" instead of "plot f(x) with lines".

In the syntax descriptions, braces ({}) denote optional arguments and a vertical bar (|) separates mutually
exclusive choices.

Cd

The c¢d command changes the working directory.

Syntax:
cd ’<directory-name>’

The directory name must be enclosed in quotes.

Examples:
cd ’subdir’
Cd n .. n

It is recommended that Windows users use single-quotes, because backslash [\] has special significance inside
double-quotes and has to be escaped. For example,
cd "c:\newdata"

fails, but
cd ’c:\newdata’
cd "c:\\newdata"

work as expected.

Call

The call command is identical to the load command with one exception: you can have up to ten additional
parameters to the command (delimited according to the standard parser rules) which can be substituted
into the lines read from the file. As each line is read from the called input file, it is scanned for the sequence
$ (dollar-sign) followed by a digit (0-9). If found, the sequence is replaced by the corresponding parameter
from the call command line. If the parameter was specified as a string in the call line, it is substituted
without its enclosing quotes. Sequence $# is replaced by the number of passed parameters. $ followed by
any character will be that character; e.g. use 8 to get a single $. Providing more than ten parameters on
the call command line will cause an error. A parameter that was not provided substitutes as nothing. Files
being called may themselves contain call or load commands.

Syntax:

gnuplot 4.6 61

call "<input-file>" <parameter-0> <parm-1> ... <parm-9>

The name of the input file must be enclosed in quotes, and it is recommended that parameters are similarly
enclosed in quotes (future versions of gnuplot may treat quoted and unquoted arguments differently).

Example:

If the file ’calltest.gp’ contains the line:
print "argc=$# p0=$0 p1=%$1 p2=$2 p3=$3 p4=%$4 p5=$5 p6=%$6 p7=x3$7x"

entering the command:
call ’calltest.gp’ "abcd" 1.2 + "’quoted’" -- "$2"

will display:
argc=7 pO=abcd pl=1.2 p2=+ p3=’quoted’ p4=- p5=- p6=$2 p7=xx

NOTE: there is a clash in syntax with the datafile using callback operator. Use $$n or column(n) to
access column n from a datafile inside a called datafile plot.

Clear

The clear command erases the current screen or output device as specified by set output. This usually
generates a formfeed on hardcopy devices. Use set terminal to set the device type.

For some terminals clear erases only the portion of the plotting surface defined by set size, so for these it
can be used in conjunction with set multiplot to create an inset.

Example:
set multiplot
plot sin(x)
set origin 0.5,0.5
set size 0.4,0.4
clear
plot cos(x)
unset multiplot

Please see set multiplot (p. , set size (p. , and set origin (p. [132]) for details of these
commands.

Do

Syntax:
do for <iteration-spec> {
<commands>
<commands>

}

Execute a sequence of commands multiple times. The commands must be enclosed in curly brackets, and
the opening "{" must be on the same line as the do keyword. This command cannot be used with old-style
(un-bracketed) if/else statements. See if (p.[69)). For examples of iteration specifiers, see iteration (p.[70]).
Example:
set multiplot layout 2,2
do for [name in "A B C D"] {
filename = name . ".dat"
set title sprintf("Condition %s",name)
plot filename title name
}

unset multiplot

62 gnuplot 4.6

Evaluate

The evaluate command executes the commands given as an argument string. Newline characters are not
allowed within the string.
Syntax:

eval <string expression>

This is especially useful for a repetition of similar commands.

Example:
set_label(x, y, text) \
= sprintf("set label ’%s’ at %f, %f point pt 5", text, x, y)
eval set_label(l., 1., ’one/one’)
eval set_label(2., 1., ’two/one’)
eval set_label(1l., 2., ’one/two’)

Please see substitution macros (p. for another way to execute commands from a string.

Exit

The commands exit and quit, as well as the END-OF-FILE character (usually Ctrl-D) terminate input
from the current input stream: terminal session, pipe, and file input (pipe).

If input streams are nested (inherited load scripts), then reading will continue in the parent stream. When
the top level stream is closed, the program itself will exit.

The command exit gnuplot will immediately and unconditionally cause gnuplot to exit even if the input
stream is multiply nested. In this case any open output files may not be completed cleanly. Example of use:

bind "ctrl-x" "unset output; exit gnuplot"

See help for batch/interactive (p. for more details.

Fit

The fit command can fit a user-supplied expression to a set of data points (x,z) or (x,y,z), using an imple-
mentation of the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm. Any user-defined variable
occurring in the expression may serve as a fit parameter, but the return type of the expression must be real.

Syntax:
fit {<ranges>} <expression>
’<datafile>’ {datafile-modifiers}
via ’<parameter file>’ | <vari>{,<var2>,...}

Ranges may be specified to temporarily limit the data which is to be fitted; any out-of-range data points are
ignored. The syntax is
[{dummy_variable=}{<min>}{:<max>}],

analogous to plot; see plot ranges (p. [87).

<expression> is any valid gnuplot expression, although it is usual to use a previously user-defined function
of the form f(x) or f(x,y).

<datafile> is treated as in the plot command. All the plot datafile modifiers (using, every,...) except
smooth and the deprecated thru are applicable to fit. See plot datafile (p. .

The default data formats for fitting functions with a single independent variable, z=f(x), are z or x:z. That
is, if there is only a single column then it is the dependent variable and the line numbers is the independent
variable. If there are two columns, the first is the independent variable and the second is the dependent
variable.

gnuplot 4.6 63

Those formats can be changed with the datafile using qualifier, for example to take the z value from a
different column or to calculate it from several columns. A third using qualifier (a column number or an
expression), if present, is interpreted as the standard deviation of the corresponding z value and is used to
compute a weight for the datum, 1/s**2. Otherwise, all data points are weighted equally, with a weight of
one. Note that if you don’t specify a using option at all, no z standard deviations are read from the datafile
even if it does have a third column, so you’ll always get unit weights.

To fit a function with two independent variables, z=f(x,y), the required format is using with four items,
x:y:z:8. The complete format must be given — no default columns are assumed for a missing token. Weights
for each data point are evaluated from ’s’ as above. If error estimates are not available, a constant value can
be specified as a constant expression (see plot datafile using (p.[83)), e.g., using 1:2:3:(1).

The fit function may have up to five independent variables. There must be two more using qualifiers than
there are independent variables, unless there is only one variable. The allowed formats, and the default
dummy variable names, are as follows:

z
X:Z

X:Z:8

X:y:Z:s
X:y:t:z:s
X:y:t:u:z:s
X:y:t:u:v:z:s

The dummy variable names may be changed with ranges as noted above. The first range corresponds to the
first using spec, etc. A range may also be given for z (the dependent variable), but that name cannot be
changed.

Multiple datasets may be simultaneously fit with functions of one independent variable by making y a
‘pseudo-variable’, e.g., the dataline number, and fitting as two independent variables. See fit multi-branch

(- [67).
The via qualifier specifies which parameters are to be adjusted, either directly, or by referencing a parameter
file.

Examples:

f(x) = a*x**2 + b*x + ¢

g(x,y) = a*x**2 + bky**2 + ckxxy

FIT_LIMIT = 1le-6

fit f(x) ’measured.dat’ via ’start.par’

fit £(x) ’measured.dat’ using 3:($7-5) via ’start.par’

fit f(x) ’./data/trash.dat’ using 1:2:3 via a, b, c

fit g(x,y) ’surface.dat’ using 1:2:3:(1) via a, b, c

fit a0 + al*x/(1 + a2*x/(1 + a3*x)) ’measured.dat’ via a0,al,a2,a3
fit a*x + bxy ’surface.dat’ using 1:2:3:(1) via a,b

fit [*:#] [yaks=*:*] axx+b*yaks ’surface.dat’ u 1:2:3:(1) via a,b
fit a*x + bxy + cxt ’foo.dat’ using 1:2:3:4:(1) via a,b,c
h(x,y,t,u,v) = a*x + bxy + cxt + d¥u + exv

fit h(x,y,t,u,v) ’foo.dat’ using 1:2:3:4:5:6:(1) via a,b,c,d,e

After each iteration step, detailed information about the current state of the fit is written to the display.
The same information about the initial and final states is written to a log file, "fit.log". This file is always
appended to, so as to not lose any previous fit history; it should be deleted or renamed as desired. By using
the command set fit logfile, the name of the log file can be changed.

If gnuplot was built with this option, and you activated it using set fit errorvariables, the error for each
fitted parameter will be stored in a variable named like the parameter, but with "_err" appended. Thus the
errors can be used as input for further computations.

The fit may be interrupted by pressing Ctrl-C. After the current iteration completes, you have the option
to (1) stop the fit and accept the current parameter values, (2) continue the fit, (3) execute a gnuplot
command as specified by the environment variable FIT_SCRIPT. The default for FIT_SCRIPT is replot,

64 gnuplot 4.6

so if you had previously plotted both the data and the fitting function in one graph, you can display the
current state of the fit.

Once fit has finished, the update command may be used to store final values in a file for subsequent use as
a parameter file. See update (p. [L73)) for details.

Adjustable parameters

There are two ways that via can specify the parameters to be adjusted, either directly on the command line
or indirectly, by referencing a parameter file. The two use different means to set initial values.

Adjustable parameters can be specified by a comma-separated list of variable names after the via keyword.
Any variable that is not already defined is created with an initial value of 1.0. However, the fit is more likely
to converge rapidly if the variables have been previously declared with more appropriate starting values.

In a parameter file, each parameter to be varied and a corresponding initial value are specified, one per line,
in the form

varname = value

Comments, marked by ’#’, and blank lines are permissible. The special form

varname = value # FIXED

means that the variable is treated as a ’fixed parameter’, initialized by the parameter file, but not adjusted by
fit. For clarity, it may be useful to designate variables as fixed parameters so that their values are reported
by fit. The keyword # FIXED has to appear in exactly this form.

Short introduction

fit is used to find a set of parameters that 'best’ fits your data to your user-defined function. The fit is
judged on the basis of the sum of the squared differences or 'residuals’ (SSR) between the input data points
and the function values, evaluated at the same places. This quantity is often called ’chisquare’ (i.e., the
Greek letter chi, to the power of 2). The algorithm attempts to minimize SSR, or more precisely, WSSR, as
the residuals are 'weighted’ by the input data errors (or 1.0) before being squared; see fit error_estimates

(p. for details.

That’s why it is called ’least-squares fitting’. Let’s look at an example to see what is meant by 'non-linear’,
but first we had better go over some terms. Here it is convenient to use z as the dependent variable for
user-defined functions of either one independent variable, z=f(x), or two independent variables, z=f(x,y). A
parameter is a user-defined variable that fit will adjust, i.e., an unknown quantity in the function declaration.
Linearity /non-linearity refers to the relationship of the dependent variable, z, to the parameters which fit
is adjusting, not of z to the independent variables, x and/or y. (To be technical, the second {and higher}
derivatives of the fitting function with respect to the parameters are zero for a linear least-squares problem).

For linear least-squares (LLS), the user-defined function will be a sum of simple functions, not involving
any parameters, each multiplied by one parameter. NLLS handles more complicated functions in which
parameters can be used in a large number of ways. An example that illustrates the difference between linear
and nonlinear least-squares is the Fourier series. One member may be written as

z=a*sin(c*x) + b*cos(c*x).

If a and b are the unknown parameters and c is constant, then estimating values of the parameters is a linear
least-squares problem. However, if ¢ is an unknown parameter, the problem is nonlinear.

In the linear case, parameter values can be determined by comparatively simple linear algebra, in one
direct step. However LLS is a special case which is also solved along with more general NLLS problems by
the iterative procedure that gnuplot uses. fit attempts to find the minimum by doing a search. Each step
(iteration) calculates WSSR with a new set of parameter values. The Marquardt-Levenberg algorithm selects
the parameter values for the next iteration. The process continues until a preset criterion is met, either (1)
the fit has "converged" (the relative change in WSSR is less than FIT_LIMIT), or (2) it reaches a preset
iteration count limit, FIT_MAXITER (see fit control variables (p.) The fit may also be interrupted
and subsequently halted from the keyboard (see fit (p.) The user variable FIT_CONVERGED contains

gnuplot 4.6 65

1 if the previous fit command terminated due to convergence; it contains 0 if the previous fit terminated for
any other reason.

Often the function to be fitted will be based on a model (or theory) that attempts to describe or predict
the behaviour of the data. Then fit can be used to find values for the free parameters of the model, to
determine how well the data fits the model, and to estimate an error range for each parameter. See fit
error_estimates (p. [65).

Alternatively, in curve-fitting, functions are selected independent of a model (on the basis of experience as
to which are likely to describe the trend of the data with the desired resolution and a minimum number of
parameters*functions.) The fit solution then provides an analytic representation of the curve.

However, if all you really want is a smooth curve through your data points, the smooth option to plot may
be what you’ve been looking for rather than fit.

Error estimates

In fit, the term "error" is used in two different contexts, data error estimates and parameter error estimates.

Data error estimates are used to calculate the relative weight of each data point when determining the
weighted sum of squared residuals, WSSR or chisquare. They can affect the parameter estimates, since they
determine how much influence the deviation of each data point from the fitted function has on the final
values. Some of the fit output information, including the parameter error estimates, is more meaningful if
accurate data error estimates have been provided.

The ’statistical overview’ describes some of the fit output and gives some background for the ’practical
guidelines’.

Statistical overview

The theory of non-linear least-squares (NLLS) is generally described in terms of a normal distribution of
errors, that is, the input data is assumed to be a sample from a population having a given mean and a
Gaussian (normal) distribution about the mean with a given standard deviation. For a sample of sufficiently
large size, and knowing the population standard deviation, one can use the statistics of the chisquare dis-
tribution to describe a "goodness of fit" by looking at the variable often called "chisquare". Here, it is
sufficient to say that a reduced chisquare (chisquare/degrees of freedom, where degrees of freedom is the
number of datapoints less the number of parameters being fitted) of 1.0 is an indication that the weighted
sum of squared deviations between the fitted function and the data points is the same as that expected for
a random sample from a population characterized by the function with the current value of the parameters
and the given standard deviations.

If the standard deviation for the population is not constant, as in counting statistics where variance = counts,
then each point should be individually weighted when comparing the observed sum of deviations and the
expected sum of deviations.

At the conclusion fit reports ’stdfit’, the standard deviation of the fit, which is the rms of the residuals, and
the variance of the residuals, also called 'reduced chisquare’ when the data points are weighted. The number
of degrees of freedom (the number of data points minus the number of fitted parameters) is used in these
estimates because the parameters used in calculating the residuals of the datapoints were obtained from the
same data. These values are exported to the variables

FIT_NDF = Number of degrees of freedom
FIT_WSSR = Weighted sum-of-squares residual
FIT_STDFIT = sqrt(WSSR/NDF)

To estimate confidence levels for the parameters, one can use the minimum chisquare obtained from the fit
and chisquare statistics to determine the value of chisquare corresponding to the desired confidence level,
but considerably more calculation is required to determine the combinations of parameters which produce
such values.

Rather than determine confidence intervals, fit reports parameter error estimates which are readily obtained
from the variance-covariance matrix after the final iteration. By convention, these estimates are called

66 gnuplot 4.6

"standard errors" or "asymptotic standard errors", since they are calculated in the same way as the standard
errors (standard deviation of each parameter) of a linear least-squares problem, even though the statistical
conditions for designating the quantity calculated to be a standard deviation are not generally valid for the
NLLS problem. The asymptotic standard errors are generally over-optimistic and should not be used for
determining confidence levels, but are useful for qualitative purposes.

The final solution also produces a correlation matrix indicating correlation of parameters in the region of the
solution; The main diagonal elements, autocorrelation, are always 1; if all parameters were independent, the
off-diagonal elements would be nearly 0. Two variables which completely compensate each other would have
an off-diagonal element of unit magnitude, with a sign depending on whether the relation is proportional or
inversely proportional. The smaller the magnitudes of the off-diagonal elements, the closer the estimates of
the standard deviation of each parameter would be to the asymptotic standard error.

Practical guidelines

If you have a basis for assigning weights to each data point, doing so lets you make use of additional knowledge
about your measurements, e.g., take into account that some points may be more reliable than others. That
may affect the final values of the parameters.

Weighting the data provides a basis for interpreting the additional fit output after the last iteration. Even
if you weight each point equally, estimating an average standard deviation rather than using a weight of 1
makes WSSR a dimensionless variable, as chisquare is by definition.

Each fit iteration will display information which can be used to evaluate the progress of the fit. (An ™

indicates that it did not find a smaller WSSR and is trying again.) The ’sum of squares of residuals’; also
called ’chisquare’, is the WSSR between the data and your fitted function; fit has minimized that. At this
stage, with weighted data, chisquare is expected to approach the number of degrees of freedom (data points
minus parameters). The WSSR can be used to calculate the reduced chisquare (WSSR/ndf) or stdfit, the
standard deviation of the fit, sqrt(WSSR /ndf). Both of these are reported for the final WSSR.

If the data are unweighted, stdfit is the rms value of the deviation of the data from the fitted function, in
user units.

If you supplied valid data errors, the number of data points is large enough, and the model is correct, the
reduced chisquare should be about unity. (For details, look up the ’chi-squared distribution’ in your favourite
statistics reference.) If so, there are additional tests, beyond the scope of this overview, for determining how
well the model fits the data.

A reduced chisquare much larger than 1.0 may be due to incorrect data error estimates, data errors not
normally distributed, systematic measurement errors, 'outliers’, or an incorrect model function. A plot of
the residuals, e.g., plot ’datafile’ using 1:($2-f($1)), may help to show any systematic trends. Plotting
both the data points and the function may help to suggest another model.

Similarly, a reduced chisquare less than 1.0 indicates WSSR is less than that expected for a random sample
from the function with normally distributed errors. The data error estimates may be too large, the statistical
assumptions may not be justified, or the model function may be too general, fitting fluctuations in a particular
sample in addition to the underlying trends. In the latter case, a simpler function may be more appropriate.

You'll have to get used to both fit and the kind of problems you apply it to before you can relate the
standard errors to some more practical estimates of parameter uncertainties or evaluate the significance of
the correlation matrix.

Note that fit, in common with most NLLS implementations, minimizes the weighted sum of squared distances
(y-f(x))**2. It does not provide any means to account for "errors" in the values of x, only in y. Also, any
"outliers" (data points outside the normal distribution of the model) will have an exaggerated effect on the
solution.

Control

There are a number of gnuplot variables that can be defined to affect fit. Those which can be defined once
gnuplot is running are listed under ’control_variables’ while those defined before starting gnuplot are listed
under ’environment_variables’.

gnuplot 4.6 67

Control variables

The default epsilon limit (1e-5) may be changed by declaring a value for
FIT_LIMIT

When the sum of squared residuals changes between two iteration steps by a factor less than this number
(epsilon), the fit is considered to have 'converged’.

The maximum number of iterations may be limited by declaring a value for
FIT_MAXITER

A value of 0 (or not defining it at all) means that there is no limit.

If you need even more control about the algorithm, and know the Marquardt-Levenberg algorithm well, there
are some more variables to influence it. The startup value of lambda is normally calculated automatically
from the ML-matrix, but if you want to, you may provide your own one with

FIT_START_LAMBDA

Specifying FIT_START_LAMBDA as zero or less will re-enable the automatic selection. The variable
FIT_LAMBDA_FACTOR

gives the factor by which lambda is increased or decreased whenever the chi-squared target function in-
creased or decreased significantly. Setting FIT_LAMBDA_FACTOR to zero re-enables the default factor of
10.0.

Other variables with the FIT_ prefix may be added to fit, so it is safer not to use that prefix for user-defined
variables.

The variables FIT_SKIP and FIT_INDEX were used by earlier releases of gnuplot with a ’fit’ patch called
gnufit and are no longer available. The datafile every modifier provides the functionality of FIT_SKIP.
FIT_INDEX was used for multi-branch fitting, but multi-branch fitting of one independent variable is now
done as a pseudo-3D fit in which the second independent variable and using are used to specify the branch.
See fit multi-branch (p. [67).

Environment variables

The environment variables must be defined before gnuplot is executed; how to do so depends on your
operating system.
FIT_LOG

changes the name (and/or path) of the file to which the fit log will be written from the default of "fit.log"
in the working directory. The default value can be overwritten using the command set fit logfile.
FIT_SCRIPT

specifies a command that may be executed after an user interrupt. The default is replot, but a plot or
load command may be useful to display a plot customized to highlight the progress of the fit.

Multi-branch

In multi-branch fitting, multiple data sets can be simultaneously fit with functions of one independent
variable having common parameters by minimizing the total WSSR. The function and parameters (branch)
for each data set are selected by using a 'pseudo-variable’; e.g., either the dataline number (a ’column’ index
of -1) or the datafile index (-2), as the second independent variable.

Example: Given two exponential decays of the form, z=f(x), each describing a different data set but having
a common decay time, estimate the values of the parameters. If the datafile has the format x:z:s, then
f(x,y) = (y==0) 7 axexp(-x/tau) : bxexp(-x/tau)
fit f(x,y) ’datafile’ using 1:-2:2:3 wvia a, b, tau

For a more complicated example, see the file "hexa.fnc" used by the "fit.dem" demo.

Appropriate weighting may be required since unit weights may cause one branch to predominate if there is
a difference in the scale of the dependent variable. Fitting each branch separately, using the multi-branch
solution as initial values, may give an indication as to the relative effect of each branch on the joint solution.

68 gnuplot 4.6

Starting values

Nonlinear fitting is not guaranteed to converge to the global optimum (the solution with the smallest sum of
squared residuals, SSR), and can get stuck at a local minimum. The routine has no way to determine that;
it is up to you to judge whether this has happened.

fit may, and often will get "lost" if started far from a solution, where SSR is large and changing slowly as
the parameters are varied, or it may reach a numerically unstable region (e.g., too large a number causing
a floating point overflow) which results in an "undefined value" message or gnuplot halting.

To improve the chances of finding the global optimum, you should set the starting values at least roughly in
the vicinity of the solution, e.g., within an order of magnitude, if possible. The closer your starting values are
to the solution, the less chance of stopping at another minimum. One way to find starting values is to plot
data and the fitting function on the same graph and change parameter values and replot until reasonable
similarity is reached. The same plot is also useful to check whether the fit stopped at a minimum with a
poor fit.

Of course, a reasonably good fit is not proof there is not a "better" fit (in either a statistical sense, charac-
terized by an improved goodness-of-fit criterion, or a physical sense, with a solution more consistent with the
model.) Depending on the problem, it may be desirable to fit with various sets of starting values, covering
a reasonable range for each parameter.

Tips

Here are some tips to keep in mind to get the most out of fit. They’re not very organized, so you’ll have to
read them several times until their essence has sunk in.

The two forms of the via argument to fit serve two largely distinct purposes. The via "file" form is best
used for (possibly unattended) batch operation, where you just supply the startup values in a file and can
later use update to copy the results back into another (or the same) parameter file.

The via varl, var2, ... form is best used interactively, where the command history mechanism may be
used to edit the list of parameters to be fitted or to supply new startup values for the next try. This is
particularly useful for hard problems, where a direct fit to all parameters at once won’t work without good
starting values. To find such, you can iterate several times, fitting only some of the parameters, until the
values are close enough to the goal that the final fit to all parameters at once will work.

Make sure that there is no mutual dependency among parameters of the function you are fitting. For
example, don’t try to fit a*exp(x+b), because a*exp(x+b)=a*exp(b)*exp(x). Instead, fit either a*exp(x) or
exp(x+b).

A technical issue: the parameters must not be too different in magnitude. The larger the ratio of the
largest and the smallest absolute parameter values, the slower the fit will converge. If the ratio is close to
or above the inverse of the machine floating point precision, it may take next to forever to converge, or
refuse to converge at all. You will have to adapt your function to avoid this, e.g., replace 'parameter’ by
"le9*parameter’ in the function definition, and divide the starting value by 1e9.

If you can write your function as a linear combination of simple functions weighted by the parameters to be
fitted, by all means do so. That helps a lot, because the problem is no longer nonlinear and should converge
with only a small number of iterations, perhaps just one.

Some prescriptions for analysing data, given in practical experimentation courses, may have you first fit some
functions to your data, perhaps in a multi-step process of accounting for several aspects of the underlying
theory one by one, and then extract the information you really wanted from the fitting parameters of those
functions. With fit, this may often be done in one step by writing the model function directly in terms of
the desired parameters. Transforming data can also quite often be avoided, though sometimes at the cost of
a more difficult fit problem. If you think this contradicts the previous paragraph about simplifying the fit
function, you are correct.

A "singular matrix" message indicates that this implementation of the Marquardt-Levenberg algorithm
can’t calculate parameter values for the next iteration. Try different starting values, writing the function in
another form, or a simpler function.

Finally, a nice quote from the manual of another fitting package (fudgit), that kind of summarizes all these

gnuplot 4.6 69

issues: "Nonlinear fitting is an art!"

Help

The help command displays built-in help. To specify information on a particular topic use the syntax:
help {<topic>}

If <topic> is not specified, a short message is printed about gnuplot. After help for the requested topic is

given, a menu of subtopics is given; help for a subtopic may be requested by typing its name, extending the

help request. After that subtopic has been printed, the request may be extended again or you may go back
one level to the previous topic. Eventually, the gnuplot command line will return.

If a question mark (?) is given as the topic, the list of topics currently available is printed on the screen.

History

history command lists or saves previous entries in the history of the command line editing, or executes an
entry.

Here you find ’usage by examples’:

history # show the complete history

history 5 # show last 5 entries in the history
history quiet 5 # show last 5 entries without entry numbers
history "hist.gp" # write the complete history to file hist.gp

history "hist.gp" append # append the complete history to file hist.gp
history 10 "hist.gp" # write last 10 commands to file hist.gp
history 10 "|head -5 >>diary.gp" # write 5 history commands using pipe

history 7load # show all history entries starting with "load"
history ?"set c" # like above, several words enclosed in quotes
hi !reread # execute last entry starting with "reread"
hist !"set xr" # like above, several words enclosed in quotes
hi !'hi # guess yourself :-))

On systems which support a popen function (Unix), the output of history can be piped through an external
program by starting the file name with a ’|’, as one of the above examples demonstrates.

If

New syntax:
if (<condition>) { <command>; <command>
<commands>
<commands>
} else {
<commands>

}

Old syntax:
if (<condition>) <command-line> [; else if (<condition>) ...; else ...]

This version of gnuplot supports block-structured if/else statements. If the keyword if or else is immediately
followed by an opening "{", then conditional execution applies to all statements, possibly on multiple input
lines, until a matching "}" terminates the block. If commands may be nested.

The old single-line if/else syntax is still supported, but can not be mixed with the new block-structured
syntax. See if-old (p. [70).

70 gnuplot 4.6

If-old

Through gnuplot version 4.4, the scope of the if/else commands was limited to a single input line. This has
been replaced by allowing a multi-line clause to be enclosed in curly brackets. The old syntax is still honored
by itself but cannot be used inside a bracketed clause.

If no opening "{" follows the if keyword, the command(s) in <command-line> will be executed if
<condition> is true (non-zero) or skipped if <condition> is false (zero). Either case will consume com-
mands on the input line until the end of the line or an occurrence of else. Note that use of ; to allow
multiple commands on the same line will not end the conditionalized commands.

Examples:

pi=3

if (pil!=acos(-1)) print "?Fixing pi!"; pi=acos(-1); print pi
will display:

?Fixing pi!
3.14159265358979

but
if (1==2) print "Never see this"; print "Or this either"

will not display anything.
else:
v=0
v=v+1l; if (vJ2) print "2" ; else if (v%43) print "3"; else print "fred"

(repeat the last line repeatedly!)
See reread (p. for an example of using if and reread together to perform a loop.

Iteration

The plot, splot, set and unset commands may optionally contain an iteration clause. This has the effect
of executing the basic command multiple times, each time re-evaluating any expressions that make use of
the iteration control variable. Iteration of arbitrary command sequences can be requested using the do
command. Two forms of iteration clause are currently supported:

for [intvar = start:end{:increment}]

for [stringvar in "A B C D"]

Examples:
plot for [filename in "A.dat B.dat C.dat"] filename using 1:2 with lines
plot for [basename in "A B C"] basename.".dat" using 1:2 with lines
set for [i = 1:10] style line i lc rgb "blue"
unset for [tag = 100:200] label tag

Nested iteration is supported:
set for [i=1:9] for [j=1:9] label i*10+j sprintf("%d",i*10+j) at i,j

See additional documentation for plot iteration (p. 7 do (p. .

Load

The load command executes each line of the specified input file as if it had been typed in interactively.
Files created by the save command can later be loaded. Any text file containing valid commands can
be created and then executed by the load command. Files being loaded may themselves contain load or
call commands. See comments (p. for information about comments in commands. To load with

arguments, see call (p. [60)).
Syntax:

gnuplot 4.6 71

load "<input-file>"

The name of the input file must be enclosed in quotes.

The special filename "-" may be used to load commands from standard input. This allows a gnuplot
command file to accept some commands from standard input. Please see help for batch/interactive

(p- for more details.

On some systems which support a popen function (Unix), the load file can be read from a pipe by starting
the file name with a ’<’.

Examples:
load ’work.gnu’
load "func.dat"
load "< loadfile_generator.sh"

The load command is performed implicitly on any file names given as arguments to gnuplot. These are
loaded in the order specified, and then gnuplot exits.

Lower

Syntax:
lower {plot_window_nb}

The lower command lowers (opposite to raise) plot window(s) associated with the interactive terminal of
your gnuplot session, i.e. pm, win, wxt or x11. It puts the plot window to bottom in the z-order windows
stack of the window manager of your desktop.

As x11 and wxt support multiple plot windows, then by default they lower these windows in descending
order of most recently created on top to the least recently created on bottom. If a plot number is supplied
as an optional parameter, only the associated plot window will be lowered if it exists.

The optional parameter is ignored for single plot-window terminals, i.e. pm and win.

Pause

The pause command displays any text associated with the command and then waits a specified amount of
time or until the carriage return is pressed. pause is especially useful in conjunction with load files.

Syntax:
pause <time> {"<string>"}
pause mouse {<endcondition>}{, <endcondition>} {"<string>"}

<time> may be any constant or expression. Choosing -1 will wait until a carriage return is hit, zero (0)
won’t pause at all, and a positive number will wait the specified number of seconds. The time is rounded to
an integer number of seconds if subsecond time resolution is not supported by the given platform. pause 0
is synonymous with print.

If the current terminal supports mousing, then pause mouse will terminate on either a mouse click or on
ctrl-C. For all other terminals, or if mousing is not active, pause mouse is equivalent to pause -1.

If one or more end conditions are given after pause mouse, then any one of the conditions will terminate
the pause. The possible end conditions are keypress, buttonl, button2, button3, close, and any. If
the pause terminates on a keypress, then the ascii value of the key pressed is returned in MOUSE_KEY.
The character itself is returned as a one character string in MOUSE_CHAR. Hotkeys (bind command) are
disabled if keypress is one of the end conditions. Zooming is disabled if button3 is one of the end conditions.

In all cases the coordinates of the mouse are returned in variables MOUSE_X, MOUSE_Y, MOUSE_X2,
MOUSE_Y2. See mouse variables (p. [37).

Note: Since pause communicates with the operating system rather than the graphics, it may behave differ-
ently with different device drivers (depending upon how text and graphics are mixed).

Examples:

72 gnuplot 4.6

pause -1 # Wait until a carriage return is hit

pause 3 # Wait three seconds

pause -1 "Hit return to continue"

pause 10 "Isn’t this pretty? It’s a cubic spline."

pause mouse "Click any mouse button on selected data point"

pause mouse keypress "Type a letter from A-F in the active window"
pause mouse buttonl,keypress

pause mouse any "Any key or button will terminate"

The variant "pause mouse key" will resume after any keypress in the active plot window. If you want to
wait for a particular key to be pressed, you can use a reread loop such as:

print "I will resume after you hit the Tab key in the plot window"
load "wait_for_tab"

File "wait_for_tab" contains the lines

pause mouse key
if (MOUSE_KEY != 9) reread

Plot

plot is the primary command for drawing plots with gnuplot. It creates plots of functions and data in many,
many ways. plot is used to draw 2D functions and data; splot draws 2D projections of 3D surfaces and
data. plot and splot offer many features in common; see splot (p. for differences. Note specifically
that although the binary <binary list> variation does work for both plot and splot, there are small
differences between them.

Syntax:
plot {<ranges>}
{<iteration>}
{<function> | {"<datafile>" {datafile-modifiers}}}
{axes <axes>} {<title-spec>} {with <style>}
{, {definitions{,}} <function> ...}

where either a <function> or the name of a data file enclosed in quotes is supplied. A function is a
mathematical expression or a pair of mathematical expressions in parametric mode. Functions may be
builtin, user-defined, or provided in the plot command itself. Multiple datafiles and/or functions may be
plotted in a single command, separated by commas. See data (p. , functions (p. .

Examples:
plot sin(x)
plot sin(x), cos(x)
plot f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)
plot "datafile.1" with lines, "datafile.2" with points
plot [t=1:10] [-pi:pi*2] tan(t), \
"data.1" using (tan($2)):($3/$4) smooth csplines \
axes x1y2 notitle with lines 5
plot for [datafile in "spinach.dat broccoli.dat"] datafile

See also show plot (p. [133)).

Axes

There are four possible sets of axes available; the keyword <axes> is used to select the axes for which a
particular line should be scaled. x1y1 refers to the axes on the bottom and left; x2y2 to those on the top
and right; x1y2 to those on the bottom and right; and x2y1 to those on the top and left. Ranges specified
on the plot command apply only to the first set of axes (bottom left).

gnuplot 4.6 73

Binary

BINARY DATA FILES:

Some earlier versions of gnuplot automatically detected binary data files. It is now necessary to provide
the keyword binary after the filename. Adequate details of the file format must be given on the command
line or extracted from the file itself for a supported binary filetype. In particular, there are two structures
for binary files, binary matrix format and binary general format.

The binary matrix format contains a two dimensional array of 32 bit IEEE float values with an additional
column and row of coordinate values. As with ASCII matrix, in the using list, enumeration of the coordinate
row constitutes column 1, enumeration of the coordinate column constitutes column 2, and the array of values
constitutes column 3.

The binary general format contains an arbitrary number of columns for which information must be specified
at the command line. For example, array, record, format and using can indicate the size, format and
dimension of data. There are a variety of useful commands for skipping file headers and changing endianess.
There are a set of commands for positioning and translating data since often coordinates are not part of the
file when uniform sampling is inherent in the data. Different from matrix binary or ASCII, general binary
does not treat the generated columns as 1, 2 or 3 in the using list. Rather, column 1 begins with column 1
of the file, or as specified in the format list.

There are global default settings for the various binary options which may be set using the same syntax as the
options when used as part of the (s)plot <filename> binary ... command. This syntax is set datafile
binary The general rule is that common command-line specified parameters override file-extracted
parameters which override default parameters.

Binary matrix is the default binary format when no keywords specific to binary general are given, i.e.,
array, record, format, filetype.

bl

General binary data can be entered at the command line via the special file name ’-’. However, this is
intended for use through a pipe where programs can exchange binary data, not for keyboards. There is
no "end of record" character for binary data. Gnuplot continues reading from a pipe until it has read the
number of points declared in the array qualifier. See binary matrix (p. or binary general (p.
for more details.

The index keyword is not supported, since the file format allows only one surface per file. The every and
using filters are supported. using operates as if the data were read in the above triplet form.

Binary File Splot Demo.

General

General binary data in which format information is not necessarily part of the file can be read by giving
further details about the file format at the command line. Although the syntax is slightly arcane to the
casual user, general binary is particularly useful for application programs using gnuplot and sending large
amounts of data.

Syntax:

plot ’<file_name>’ {binary <binary list>} ...
splot ’<file_name>’ {binary <binary list>} ...

General binary format is activated by keywords in <binary list> pertaining to information about file struc-
ture, i.e., array, record, format or filetype. Otherwise, matrix binary format is assumed. (See binary

matrix (p.|168)) for more details.)

There are some standard file types that may be read for which details about the binary format may be
extracted automatically. (Type show datafile binary at the command line for a list.) Otherwise, details
must be specified at the command line or set in the defaults. Keywords are described below.

The keyword filetype in <binary list> controls the routine used to read the file, i.e., the format of the data.
For a list of the supported file types, type show datafile binary filetypes. If no file type is given, the
rule is that traditional gnuplot binary is assumed for splot if the binary keyword stands alone. In all other
circumstances, for plot or when one of the <binary list> keywords appears, a raw binary file is assumed

http://www.gnuplot.info/demo/binary.html

74 gnuplot 4.6

whereby the keywords specify the binary format.

General binary data files fall into two basic classes, and some files may be of both classes depending upon
how they are treated. There is that class for which uniform sampling is assumed and point coordinates must
be generated. This is the class for which full control via the <binary list>> keywords applies. For this class,
the settings precedence is that command line parameters override in-file parameters, which override default
settings. The other class is that set of files for which coordinate information is contained within the file or
there is possibly a non-uniform sampling such as gnuplot binary.

Other than for the unique data files such as gnuplot binary, one should think of binary data as conceptually
the same as ASCII data. Each point has columns of information which are selected via the <using list>
associated with using. When no format string is specified, gnuplot will retrieve a number of binary variables
equal to the largest column given in the <using list>. For example, using 1:3 will result in three columns
being read, of which the second will be ignored. There are default using lists based upon the typical number
of parameters associated with a certain plot type. For example, with image has a default of using 1,
while with rgbimage has a default of using 1:2:3. Note that the special characters for using representing
point/line/index generally should not be used for binary data. There are keywords in <binary list> that
control this.

Array

Describes the sampling array dimensions associated with the binary file. The coordinates will be generated
by gnuplot. A number must be specified for each dimension of the array. For example, array=(10,20)
means the underlying sampling structure is two-dimensional with 10 points along the first (x) dimension and
20 points along the second (y) dimension. A negative number indicates that data should be read until the
end of file. If there is only one dimension, the parentheses may be omitted. A colon can be used to separate
the dimensions for multiple records. For example, array=25:35 indicates there are two one-dimensional
records in the file.

Note: Gnuplot version 4.2 used the syntax array=128x128 rather than
array=(128,128). The older syntax is now deprecated, but may
still work if your copy of gnuplot was built to support
backwards compatibility.

Record

This keyword serves the same function as array, having the same syntax. However, record causes gnuplot
to not generate coordinate information. This is for the case where such information may be included in one
of the columns of the binary data file.

Skip

This keyword allows you to skip sections of a binary file. For instance, if the file contains a 1024 byte header
before the start of the data region you would probably want to use

plot ’<file_name>’ binary skip=1024 ...

If there are multiple records in the file, you may specify a leading offset for each. For example, to skip 512
bytes before the 1st record and 256 bytes before the second and third records

plot ’<file_name> binary record=356:356:356 skip=512:256:256 ...

Format

The default binary format is a float. For more flexibility, the format can include details about variable sizes.
For example, format="%uchar%int%float" associates an unsigned character with the first using column,
an int with the second column and a float with the third column. If the number of size specifications is less
than the greatest column number, the size is implicitly taken to be similar to the last given variable size.

gnuplot 4.6 75

Furthermore, similar to the using specification, the format can include discarded columns via the * character
and have implicit repetition via a numerical repeat-field. For example, format="%%*2int%3float" causes
gnuplot to discard two ints before reading three floats. To list variable sizes, type show datafile binary
datasizes. There are a group of names that are machine dependent along with their sizes in bytes for the
particular compilation. There is also a group of names which attempt to be machine independent.

Endian

Often the endianess of binary data in the file does not agree with the endianess used by the platform on which
gnuplot is running. Several words can direct gnuplot how to arrange bytes. For example endian=little
means treat the binary file as having byte significance from least to greatest. The options are

little: 1least significant to greatest significance
big: greatest significance to least significance
default: assume file endianess is the same as compiler
swap (swab): Interchange the significance. (If things
don’t look right, try this.)

Gnuplot can support "middle" ("pdp") endian if it is compiled with that option.

Filetype

For some standard binary file formats gnuplot can extract all the necessary information from the file in
question. As an example, "format=edf" will read ESRF Header File format files. For a list of the currently
supported file formats, type show datafile binary filetypes.

There is a special file type called auto for which gnuplot will check if the binary file’s extension is a quasi-
standard extension for a supported format.

Command line keywords may be used to override settings extracted from the file. The settings from the file
override any defaults. (See set datafile binary (p. [108]) for details.)

Avs avs is one of the automatically recognized binary file types for images. AVS is an extremely simple
format, suitable mostly for streaming between applications. It consists of 2 longs (xwidth, ywidth) followed
by a stream of pixels, each with four bytes of information alpha/red/green/blue.

Edf edf is one of the automatically recognized binary file types for images. EDF stands for ESRF Data
Format, and it supports both edf and ehf formats (the latter means ESRF Header Format). More information
on specifications can be found at

http://www.edfplus.info/specs

Png If gnuplot was configured to use the libgd library for png/gif/jpeg output, then it can also be used to
read these same image types as binary files. You can use an explicit command

plot ’file.png’ binary filetype=png

Or the file type will be recognized automatically from the extension if you have previously requested

set datafile binary filetype=auto

Keywords

The following keywords apply only when generating coordinates from binary data files. That is, the control
mapping the individual elements of a binary array, matrix, or image to specific x/y/z positions.

76 gnuplot 4.6

Scan A great deal of confusion can arise concerning the relationship between how gnuplot scans a binary file
and the dimensions seen on the plot. To lessen the confusion, conceptually think of gnuplot always scanning
the binary file point/line/plane or fast/medium/slow. Then this keyword is used to tell gnuplot how to map
this scanning convention to the Cartesian convention shown in plots, i.e., x/y/z. The qualifier for scan is a
two or three letter code representing where point is assigned (first letter), line is assigned (second letter), and
plane is assigned (third letter). For example, scan=yx means the fastest, point-by-point, increment should
be mapped along the Cartesian y dimension and the middle, line-by-line, increment should be mapped along
the x dimension.

When the plotting mode is plot, the qualifier code can include the two letters x and y. For splot, it can
include the three letters x, y and z.

There is nothing restricting the inherent mapping from point/line/plane to apply only to Cartesian coordi-
nates. For this reason there are cylindrical coordinate synonyms for the qualifier codes where t (theta), r
and z are analogous to the x, y and z of Cartesian coordinates.

Transpose Shorthand notation for scan=yx or scan=yxz.

Dx, dy, dz When gnuplot generates coordinates, it uses the spacing described by these keywords. For
example dx=10 dy=20 would mean space samples along the x dimension by 10 and space samples along
the y dimension by 20. dy cannot appear if dx does not appear. Similarly, dz cannot appear if dy does
not appear. If the underlying dimensions are greater than the keywords specified, the spacing of the highest
dimension given is extended to the other dimensions. For example, if an image is being read from a file and
only dx=3.5 is given gnuplot uses a delta x and delta y of 3.5.

The following keywords also apply only when generating coordinates. However they may also be used with
matrix binary files.

Flipx, flipy, flipz Sometimes the scanning directions in a binary datafile are not consistent with that
assumed by gnuplot. These keywords can flip the scanning direction along dimensions x, y, z.

Origin When gnuplot generates coordinates based upon transposition and flip, it attempts to always
position the lower left point in the array at the origin, i.e., the data lies in the first quadrant of a Cartesian
system after transpose and flip.

To position the array somewhere else on the graph, the origin keyword directs gnuplot to position the lower
left point of the array at a point specified by a tuple. The tuple should be a double for plot and a triple for
splot. For example, origin=(100,100):(100,200) is for two records in the file and intended for plotting
in two dimensions. A second example, origin=(0,0,3.5), is for plotting in three dimensions.

Center Similar to origin, this keyword will position the array such that its center lies at the point given
by the tuple. For example, center=(0,0). Center does not apply when the size of the array is Inf.

Rotate The transpose and flip commands provide some flexibility in generating and orienting coordinates.
However, for full degrees of freedom, it is possible to apply a rotational vector described by a rotational
angle in two dimensions.

The rotate keyword applies to the two-dimensional plane, whether it be plot or splot. The rotation is done
with respect to the positive angle of the Cartesian plane.

The angle can be expressed in radians, radians as a multiple of pi, or degrees. For example, rotate=1.5708,
rotate=0.5pi and rotate=90deg are equivalent.

If origin is specified, the rotation is done about the lower left sample point before translation. Otherwise,
the rotation is done about the array center.

gnuplot 4.6 77

Perpendicular For splot, the concept of a rotational vector is implemented by a triple representing the
vector to be oriented normal to the two-dimensional x-y plane. Naturally, the default is (0,0,1). Thus
specifying both rotate and perpendicular together can orient data myriad ways in three-space.

The two-dimensional rotation is done first, followed by the three-dimensional rotation. That is, if R’ is the
rotational 2 x 2 matrix described by an angle, and P is the 3 x 3 matrix projecting (0,0,1) to (xp,yp,zp),
let R be constructed from R’ at the upper left sub-matrix, 1 at element 3,3 and zeros elsewhere. Then the
matrix formula for translating data is v’ = P R v, where v is the 3 x 1 vector of data extracted from the
data file. In cases where the data of the file is inherently not three-dimensional, logical rules are used to
place the data in three-space. (E.g., usually setting the z-dimension value to zero and placing 2D data in
the x-y plane.)

Data

Discrete data contained in a file can be displayed by specifying the name of the data file (enclosed in single
or double quotes) on the plot command line.

Syntax:

plot ’<file_name>’ {binary <binary list>}
{{nonuniform} matrix}
{index <index list> | index "<name>"}
{every <every list>}
{thru <thru expression>}
{using <using list>}
{smooth <option>}
{volatile} {noautoscale}

The modifiers binary, index, every, thru, using, and smooth are discussed separately. In brief, binary
allows data entry from a binary file (default is ASCII), index selects which data sets in a multi-data-set file
are to be plotted, every specifies which points within a single data set are to be plotted, using determines
how the columns within a single record are to be interpreted (thru is a special case of using), and smooth
allows for simple interpolation and approximation. (splot has a similar syntax, but does not support the
smooth and thru options.)

The noautoscale keyword means that the points making up this plot will be ignored when automatically
determining axis range limits.

ASCII DATA FILES:

Data files should contain at least one data point per record (using can select one data point from the record).
Records beginning with # (and also with ! on VMS) will be treated as comments and ignored. Each data
point represents an (x,y) pair. For plots with error bars or error bars with lines (see set style errorbars

(p- or set style errorlines (p.), each data point is (x,y,ydelta), (x,y,ylow,yhigh), (x,y,xdelta),
(x,y,xlow,xhigh), or (x,y,xlow,xhigh,ylow,yhigh).

In all cases, the numbers of each record of a data file must be separated by white space (one or more blanks
or tabs) unless a format specifier is provided by the using option. This white space divides each record
into columns. However, whitespace inside a pair of double quotes is ignored when counting columns, so the
following datafile line has three columns:

1.0 "second column" 3.0

Data may be written in exponential format with the exponent preceded by the letter e or E. The fortran
exponential specifiers d, D, q, and Q may also be used if the command set datafile fortran is in effect.

Only one column (the y value) need be provided. If x is omitted, gnuplot provides integer values starting
at 0.

In datafiles, blank records (records with no characters other than blanks and a newline and/or carriage
return) are significant.

Single blank records designate discontinuities in a plot; no line will join points separated by a blank records
(if they are plotted with a line style).

78 gnuplot 4.6

Two blank records in a row indicate a break between separate data sets. See index (p. .

If autoscaling has been enabled (set autoscale), the axes are automatically extended to include all data-
points, with a whole number of tic marks if tics are being drawn. This has two consequences: i) For splot,
the corner of the surface may not coincide with the corner of the base. In this case, no vertical line is drawn.
ii) When plotting data with the same x range on a dual-axis graph, the x coordinates may not coincide if
the x2tics are not being drawn. This is because the x axis has been autoextended to a whole number of tics,
but the x2 axis has not. The following example illustrates the problem:

reset; plot ’-’, ’-’ axes x2yl

11

19 19

e

11

19 19

e

To avoid this, you can use the fixmin/fixmax feature of the set autoscale command, which turns off the
automatic extension of the axis range up to the next tic mark.

Label coordinates and text can also be read from a data file (see labels (p.)

Every

The every keyword allows a periodic sampling of a data set to be plotted.

In the discussion a "point" is a datum defined by a single record in the file; "block" here will mean the same
thing as "datablock" (see glossary (p.)

Syntax:
plot ’file’ every {<point_incr>}
{:{<block_incr>}
{:{<start_point>}
{:{<start_block>}
{:{<end_point>}
{:<end_block>}}}}}

The data points to be plotted are selected according to a loop from <start_point> to <end_point> with
increment <point_incr> and the blocks according to a loop from <start_block> to <end_block> with
increment <block_incr>.

The first datum in each block is numbered ’0’, as is the first block in the file.
Note that records containing unplottable information are counted.

Any of the numbers can be omitted; the increments default to unity, the start values to the first point or
block, and the end values to the last point or block. If every is not specified, all points in all lines are
plotted.

Examples:
every :::3::3 # selects just the fourth block (’0’ is first)
every :::::9 # selects the first 10 blocks
every 2:2 # selects every other point in every other block
every ::5::15 # selects points 5 through 15 in each block

See
simple plot demos (simple.dem)

Y
Non-parametric splot demos

, and

Parametric splot demos

http://www.gnuplot.info/demo/simple.html
http://www.gnuplot.info/demo/surface1.html
http://gnuplot.sourceforge.net/demo/surface2.html

gnuplot 4.6 79

Example datafile

This example plots the data in the file "population.dat" and a theoretical curve:

pop(x) = 103*exp((1965-x)/10)
set xrange [1960:1990]
plot ’population.dat’, pop(x)

The file "population.dat" might contain:

Gnu population in Antarctica since 1965

1965 103
1970 55
1975 34
1980 24
1985 10

Binary examples:

Selects two float values (second one implicit) with a float value
discarded between them for an indefinite length of 1D data.
plot ’<file_name>’ binary format="Yfloat)*float" using 1:2 with lines

The data file header contains all details necessary for creating
coordinates from an EDF file.

plot ’<file_name>’ binary filetype=edf with image

plot ’<file_name>.edf’ binary filetype=auto with image

Selects three unsigned characters for components of a raw RGB image
and flips the y-dimension so that typical image orientation (start
at top left corner) translates to the Cartesian plane. Pixel

spacing is given and there are two images in the file. One of them

H O H

is translated via origin.
plot ’<file_name>’ binary array=(512,1024):(1024,512) format=’%uchar’ \
dx=2:1 dy=1:2 origin=(0,0):(1024,1024) flipy u 1:2:3 w rgbimage

Four separate records in which the coordinates are part of the
data file. The file was created with a endianess different from
the system on which gnuplot is running.

splot ’<file_name>’ binary record=30:30:29:26 endian=swap u 1:2:3

Same input file, but this time we skip the 1st and 3rd records
splot ’<file_name>’ binary record=30:26 skip=360:348 endian=swap u 1:2:3

See also binary matrix (p. [168)).

Index

The index keyword allows you to select specific data sets in a multi-data-set file for plotting.

Syntax:
plot ’file’ index { <m>{:<n>{:<p>}} | "<name>" }

Data sets are separated by pairs of blank records. index <m> selects only set <m>; index <m>:<n>
selects sets in the range <m> to <n>; and index <m>:<n>:<p> selects indices <m>, <m>+<p>,
<m>+2<p>, etc., but stopping at <n>. Following C indexing, the index 0 is assigned to the first data set
in the file. Specifying too large an index results in an error message. If <p> is specified but <n> is left
blank then every <p>-th dataset is read until the end of the file. If index is not specified, the entire file is
plotted as a single data set.

Example:

80 gnuplot 4.6

plot ’file’ index 4:5

For each point in the file, the index value of the data set it appears in is available via the pseudo-column
column(-2). This leads to an alternative way of distinguishing individual data sets within a file as shown
below. This is more awkward than the index command if all you are doing is selecting one data set for
plotting, but is very useful if you want to assign different properties to each data set. See pseudocolumns

(p- [B5)), 1c variable (p. [35).
Example:

plot ’file’ using 1:(column(-2)==4 7 $2 : NaN) # very awkward
plot ’file’ using 1:2:(column(-2)) linecolor variable # very useful!

index ’<name>’ selects the data set with name ’<name>’. Names are assigned to data sets in comment
lines. The comment character and leading white space are removed from the comment line. If the resulting
line starts with <name>, the following data set is now named <name> and can be selected.

Example:

plot ’file’ index ’Population’

Please note that every comment that starts with <name> will name the following data set. To avoid
problems it may be useful to choose a naming scheme like '== Population ==’ or ’[Population]’.

Smooth

gnuplot includes a few general-purpose routines for interpolation and approximation of data; these are
grouped under the smooth option. More sophisticated data processing may be performed by preprocessing
the data externally or by using fit with an appropriate model.

Syntax:

smooth {unique | frequency | cumulative | cnormal | kdensity
| csplines | acsplines | bezier | sbezier}

unique, frequency, cumulative and cnormal plot the data after making them monotonic. Each of the
other routines uses the data to determine the coefficients of a continuous curve between the endpoints of
the data. This curve is then plotted in the same manner as a function, that is, by finding its value at
uniform intervals along the abscissa (see set samples (p.) and connecting these points with straight
line segments (if a line style is chosen).

If autoscale is in effect, the ranges will be computed such that the plotted curve lies within the borders of
the graph.

If autoscale is not in effect, and the smooth option is either acspline or cspline, the sampling of the
generated curve is done across the intersection of the x range covered by the input data and the fixed
abscissa range as defined by set xrange.

If too few points are available to allow the selected option to be applied, an error message is produced. The
minimum number is one for unique and frequency, four for acsplines, and three for the others.

The smooth options have no effect on function plots.

Acsplines The acsplines option approximates the data with a "natural smoothing spline". After the data
are made monotonic in x (see smooth unique (p.), a curve is piecewise constructed from segments of
cubic polynomials whose coefficients are found by the weighting the data points; the weights are taken from
the third column in the data file. That default can be modified by the third entry in the using list, e.g.,

plot ’data-file’ using 1:2:(1.0) smooth acsplines

Qualitatively, the absolute magnitude of the weights determines the number of segments used to construct
the curve. If the weights are large, the effect of each datum is large and the curve approaches that produced
by connecting consecutive points with natural cubic splines. If the weights are small, the curve is composed

http://www.gnuplot.info/demo/multimsh.html

gnuplot 4.6 81

of fewer segments and thus is smoother; the limiting case is the single segment produced by a weighted linear
least squares fit to all the data. The smoothing weight can be expressed in terms of errors as a statistical
weight for a point divided by a "smoothing factor" for the curve so that (standard) errors in the file can be
used as smoothing weights.

Example:

sw(x,S)=1/(x*x*S)
plot ’data_file’ using 1:2:(sw($3,100)) smooth acsplines

Bezier The bezier option approximates the data with a Bezier curve of degree n (the number of data
points) that connects the endpoints.

Csplines The csplines option connects consecutive points by natural cubic splines after rendering the
data monotonic (see smooth unique (p. [81))).

Sbezier The sbezier option first renders the data monotonic (unique) and then applies the bezier
algorithm.

Unique The unique option makes the data monotonic in x; points with the same x-value are replaced by
a single point having the average y-value. The resulting points are then connected by straight line segments.

Frequency The frequency option makes the data monotonic in x; points with the same x-value are
replaced by a single point having the summed y-values. The resulting points are then connected by straight
line segments. See also

smooth.dem

Cumulative The cumulative option makes the data monotonic in x; points with the same x-value are
replaced by a single point containing the cumulative sum of y-values of all data points with lower x-values
(i.e. to the left of the current data point). This can be used to obtain a cumulative distribution function
from data. See also

smooth.dem

Cnormal The cnormal option makes the data monotonic in x and normalises the y-values onto the range
[0:1]. Points with the same x-value are replaced by a single point containing the cumulative sum of y-values
of all data points with lower x-values (i.e. to the left of the current data point) divided by the total sum
of all y-values. This can be used to obtain a normalised cumulative distribution function from data (useful
when comparing sets of samples with differing numbers of members). See also

smooth.dem

Kdensity The kdensity option is a way to plot a kernel density estimate (which is a smooth histogram)
for a random collection of points, using Gaussian kernels. A Gaussian is placed at the location of each point
in the first column and the sum of all these Gaussians is plotted as a function. The value in the second
column is taken as weight of the Gaussian. (To obtain a normalized histogram, this should be 1/number-
of-points). The value of the third column, if supplied, is taken as the bandwidth for the kernels. If only
two columns have been specified, or if the value of the third column is zero or less, gnuplot calculates the
bandwidth which would be optimal if the input data was normally distributed. (This will usually be a very
conservative, i.e. broad bandwidth.)

Special-filenames

There are a few filenames that have a special meaning: ’’, -, '+’ and '++.

http://www.gnuplot.info/demo/smooth.html
http://www.gnuplot.info/demo/smooth.html
http://www.gnuplot.info/demo/smooth.html

82 gnuplot 4.6

The empty filename ’’ tells gnuplot to re-use the previous input file in the same plot command. So to plot
two columns from the same input file:

plot ’filename’ using 1:2, ’’ using 1:3

The special filenames '+’ and '++’ are a mechanism to allow the full range of using specifiers and plot styles
with in-line functions. Normally a function plot can only have a single y (or z) value associated with each
sampled point. The pseudo-file '+’ treats the sampled points as column 1, and allows additional column
values to be specified via a using specification, just as for a true input file. The number of samples returned
is controlled by set samples. Example:

plot ’+’ using ($1):(sin($1)):(sin($1)**2) with filledcurves

Similarly the pseudo-file '++’ returns 2 columns of data forming a regular grid of [x,y] coordinates with the
number of points along x controlled by set samples and the number of points along y controlled by set
isosamples. You must set xrange and yrange before plotting '++’. Examples:

splot ’++’ using 1:2:(sin($1)*sin($2)) with pm3d

plot ’++’ using 1:2:(sin($1)*sin($2)) with image
The special filename ’-’ specifies that the data are inline; i.e., they follow the command. Only the data
follow the command; plot options like filters, titles, and line styles remain on the plot command line. This
is similar to << in unix shell script, and $DECK in VMS DCL. The data are entered as though they are
being read from a file, one data point per record. The letter "e" at the start of the first column terminates
data entry. The using option can be applied to these data — using it to filter them through a function
might make sense, but selecting columns probably doesn’t!

’-? is intended for situations where it is useful to have data and commands together, e.g., when gnuplot is
run as a sub-process of some front-end application. Some of the demos, for example, might use this feature.
While plot options such as index and every are recognized, their use forces you to enter data that won’t
be used. For example, while

plot ’-’ index 0, ’-’ index 1
2
4
6

does indeed work,

plot ’-’, 7=’
2
4
6
e
10
12
14
e

gnuplot 4.6 83

is a lot easier to type.

If you use -* with replot, you may need to enter the data more than once. See replot (p. , refresh
(p. .
A blank filename (*’) specifies that the previous filename should be reused. This can be useful with things
like

plot ’a/very/long/filename’ using 1:2, ’’ using 1:3, ’’ using 1:4

(If you use both ’-* and *’ on the same plot command, you’ll need to have two sets of inline data, as in the
example above.)

On systems with a popen function, the datafile can be piped through a shell command by starting the file
name with a ’<’. For example,

pop(x) = 103*exp(-x/10)

plot "< awk ’{print $1-1965, $2}’ population.dat", pop(x)

would plot the same information as the first population example but with years since 1965 as the x axis. If
you want to execute this example, you have to delete all comments from the data file above or substitute
the following command for the first part of the command above (the part up to the comma):

plot "< awk ’$0 !~ /~#/ {print $1-1965, $2}’ population.dat"

While this approach is most flexible, it is possible to achieve simple filtering with the using or thru keywords.

Thru

The thru function is provided for backward compatibility.

Syntax:
plot ’file’ thru f(x)

It is equivalent to:
plot ’file’ using 1:(£($2))

While the latter appears more complex, it is much more flexible. The more natural
plot ’file’ thru f(y)

also works (i.e. you can use y as the dummy variable).

thru is parsed for splot and fit but has no effect.

Using

The most common datafile modifier is using. It tells the program which columns of data in the input file
are to be plotted.

Syntax:
plot ’file’ using <entry> {:<entry> {:<entry> ...}} {’format’}

If a format is specified, it is used to read in each datafile record using the C library ’scanf’ function. Otherwise
the record is interpreted as consisting of columns (fields) of data separated by whitespace (spaces and/or
tabs), but see datafile separator (p.[107)).

Each <entry> may be a simple column number that selects the value from one field of the input file, a string
that matches a column label in the first line of a data set, an expression enclosed in parentheses, or a special
function not enclosed in parentheses such as xticlabels(2).

If the entry is an expression in parentheses, then the function column(N) may be used to indicate the value
in column N. That is, column(1) refers to the first item read, column(2) to the second, and so on. The
special symbols $1, $2, ... are shorthand for column(1), column(2) ... The function valid(IN) tests whether
the value in the Nth column is a valid number. If each column of data in the input file contains a label in
the first row rather than a data value, this label can be used to identify the column on input and/or in the
plot legend. The column() function can be used to select an input column by label rather than by column
number. For example, if the data file contains

84 gnuplot 4.6

Height Weight Age
vall vall vall

then the following plot commands are all equivalent
plot ’datafile’ using 3:1, ’’ using 3:2
plot ’datafile’ using (column("Age")):(column(1)), \
> using (column("Age")):(column(2))
plot ’datafile’ using "Age":"Height", ’’ using "Age":"Weight"

To use the column labels in the plot legend, use set key autotitle columnhead.

In addition to the actual columns 1...N in the input data file, gnuplot presents data from several "pseudo-
columns" that hold bookkeeping information. E.g. $0 or column(0) returns the sequence number of this
data record within a dataset. Please see pseudocolumns (p. .

An empty <entry> will default to its order in the list of entries. For example, using ::4 is interpreted as
using 1:2:4.

If the using list has only a single entry, that <entry> will be used for y and the data point number (pseudo-
column $0) is used for x; for example, "plot ’file’ using 1" is identical to "plot ’file’ using 0:1". If the
using list has two entries, these will be used for x and y. See set style (p. and fit (p. for details
about plotting styles that make use of data from additional columns of input.

‘scanf’ accepts several numerical specifications but gnuplot requires all inputs to be double-precision floating-
point variables, so "%If" is essentially the only permissible specifier. A format string given by the user must
contain at least one such input specifier, and no more than seven of them. ’scanf’ expects to see white space
— a blank, tab ("\t"), newline ("\n"), or formfeed ("\f") — between numbers; anything else in the input
stream must be explicitly skipped.

Note that the use of "\t", "\n", or "\f" requires use of double-quotes rather than single-quotes.

Using _examples This creates a plot of the sum of the 2nd and 3rd data against the first: The format string
specifies comma- rather than space-separated columns. The same result could be achieved by specifying set
datafile separator ",".

plot ’file’ using 1:($2+$3) ’*%1f,%1f,%1f’

In this example the data are read from the file "MyData" using a more complicated format:
plot ’MyData’ using "%*1£%1£%x20["\n]%1lf"

The meaning of this format is:

#x1f ignore a number

%1f read a double-precision number (x by default)
%*20["\n] ignore 20 non-newline characters

%1f read a double-precision number (y by default)

One trick is to use the ternary ?: operator to filter data:

plot ’file’ using 1:($3>10 7 $2 : 1/0)

which plots the datum in column two against that in column one provided the datum in column three exceeds
ten. 1/0 is undefined; gnuplot quietly ignores undefined points, so unsuitable points are suppressed. Or
you can use the pre-defined variable NaN to achieve the same result.

In fact, you can use a constant expression for the column number, provided it doesn’t start with an opening
parenthesis; constructs like using 0+ (complicated expression) can be used. The crucial point is that
the expression is evaluated once if it doesn’t start with a left parenthesis, or once for each data point read
if it does.

If timeseries data are being used, the time can span multiple columns. The starting column should be
specified. Note that the spaces within the time must be included when calculating starting columns for

gnuplot 4.6 85

other data. E.g., if the first element on a line is a time with an embedded space, the y value should be
specified as column three.

It should be noted that plot ’file’, plot ’file’ using 1:2, and plot ’file’ using ($1):($2) can be subtly
different: 1) if file has some lines with one column and some with two, the first will invent x values when they
are missing, the second will quietly ignore the lines with one column, and the third will store an undefined
value for lines with one point (so that in a plot with lines, no line joins points across the bad point); 2) if
a line contains text at the first column, the first will abort the plot on an error, but the second and third
should quietly skip the garbage.

In fact, it is often possible to plot a file with lots of lines of garbage at the top simply by specifying
plot ’file’ using 1:2

However, if you want to leave text in your data files, it is safer to put the comment character (#) in the first
column of the text lines.

Pseudocolumns Expressions in the using clause of a plot statement can refer to additional bookkeeping
values in addition to the actual data values contained in the input file. These are contained in "pseudo-
columns".
column(0) The sequential order of each point within a data set.
The counter starts at O and is reset by two sequential blank
records. The shorthand form $0 is available.
column(-1) This counter starts at O and is reset by a single blank line.
This corresponds to the data line in array or grid data.
column(-2) The index number of the current data set within a file that
contains multiple data sets. See ‘index‘.

Xticlabels Axis tick labels can be generated via a string function, usually taking a data column as an
argument. The simplest form uses the data column itself as a string. That is, xticlabels(N) is shorthand for
xticlabels(stringcolumn(N)). This example uses the contents of column 3 as x-axis tick labels.

plot ’datafile’ using <xcol>:<ycol>:xticlabels(3) with <plotstyle>

Axis tick labels may be generated for any of the plot axes: x x2y y2 z. The ticlabels(<labelcol>) specifiers
must come after all of the data coordinate specifiers in the using portion of the command. For each data
point which has a valid set of X,Y[,Z] coordinates, the string value given to xticlabels() is added to the list
of xtic labels at the same X coordinate as the point it belongs to. xticlabels() may be shortened to xtic()
and so on.

Example:

splot "data" using 2:4:6:xtic(1):ytic(3):ztic(6)

In this example the x and y axis tic labels are taken from different columns than the x and y coordinate
values. The z axis tics, however, are generated from the z coordinate of the corresponding point.

Example:

plot "data" using 1:2:xtic($3 > 10. 7 "A" : "B")

This example shows the use of a string-valued function to generate x-axis tick labels. Each point in the data
file generates a tick mark on x labeled either "A" or "B" depending on the value in column 3.

X2ticlabels See plot using xticlabels (p. .
Yticlabels See plot using xticlabels (p. .

Y2ticlabels See plot using xticlabels (p. [85]).

86 gnuplot 4.6

Zticlabels See plot using xticlabels (p. .

Volatile

The volatile keyword indicates that the data previously read from the input stream or file may not be
available for re-reading. This tells the program to use refresh rather than replot commands whenever
possible. See refresh (p. .

Errorbars

Error bars are supported for 2D data file plots by reading one to four additional columns (or using entries);
these additional values are used in different ways by the various errorbar styles.

In the default situation, gnuplot expects to see three, four, or six numbers on each line of the data file —
either

(x, y, ydelta),

(x, y, ylow, yhigh),

(x, y, xdelta),

(x, y, xlow, xhigh),

(x, y, xdelta, ydelta), or

(x, y, xlow, xhigh, ylow, yhigh).

The x coordinate must be specified. The order of the numbers must be exactly as given above, though the
using qualifier can manipulate the order and provide values for missing columns. For example,

plot ’file’ with errorbars

plot ’file’ using 1:2:(sqrt($1)) with xerrorbars

plot ’file’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

The last example is for a file containing an unsupported combination of relative x and absolute y errors.
The using entry generates absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified instead of ylow
and yhigh, ylow = y - ydelta and yhigh = y + ydelta are derived. If there are only two numbers on the
record, yhigh and ylow are both set to y. The x error bar is a horizontal line computed in the same fashion.
To get lines plotted between the data points, plot the data file twice, once with errorbars and once with
lines (but remember to use the notitle option on one to avoid two entries in the key). Alternately, use the
errorlines command (see errorlines (p. [86])).

The error bars have crossbars at each end unless set bars is used (see set bars (p. for details).
If autoscaling is on, the ranges will be adjusted to include the error bars.
See also

errorbar demos.

See plot using (p. 7 plot with (p. , and set style (p. [145|) for more information.

Errorlines

Lines with error bars are supported for 2D data file plots by reading one to four additional columns (or
using entries); these additional values are used in different ways by the various errorlines styles.

In the default situation, gnuplot expects to see three, four, or six numbers on each line of the data file —
either

(%, y, ydelta),

(x, y, ylow, yhigh),

(x, y, xdelta),

(x, y, xlow, xhigh),

(x, y, xdelta, ydelta), or

(x, y, xlow, xhigh, ylow, yhigh).

http://gnuplot.sourceforge.net/demo/mgr.html

gnuplot 4.6 87

The x coordinate must be specified. The order of the numbers must be exactly as given above, though the
using qualifier can manipulate the order and provide values for missing columns. For example,

plot ’file’ with errorlines
plot ’file’ using 1:2:(sqrt($1)) with xerrorlines
plot ’file’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

The last example is for a file containing an unsupported combination of relative x and absolute y errors.
The using entry generates absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified instead of ylow
and yhigh, ylow = y - ydelta and yhigh = y + ydelta are derived. If there are only two numbers on the
record, yhigh and ylow are both set to y. The x error bar is a horizontal line computed in the same fashion.

The error bars have crossbars at each end unless set bars is used (see set bars (p. for details).

If autoscaling is on, the ranges will be adjusted to include the error bars.
See plot using (p. , plot with (p. , and set style (p. [145|) for more information.

Functions

Built-in or user-defined functions can be displayed by the plot and splot commands in addition to, or instead
of, data read from a file. The requested function is evaluated by sampling at regular intervals spanning the
independent axis range[s]. See set samples (p.[144]) and set isosamples (p. [117]). Example:

approx(ang) = ang - ang**3 / (3%2)
plot sin(x) title "sin(x)", approx(x) title "approximation"

To set a default plot style for functions, see set style function (p. [148)). For information on built-in
functions, see expressions functions (p. . For information on defining your own functions, see user-

defined (p. [30).

Parametric

When in parametric mode (set parametric) mathematical expressions must be given in pairs for plot and
in triplets for splot.

Examples:

plot sin(t),t**2
splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

Data files are plotted as before, except any preceding parametric function must be fully specified before a
data file is given as a plot. In other words, the x parametric function (sin(t) above) and the y parametric
function (t**2 above) must not be interrupted with any modifiers or data functions; doing so will generate
a syntax error stating that the parametric function is not fully specified.

Other modifiers, such as with and title, may be specified only after the parametric function has been
completed:

plot sin(t),t**2 title ’Parametric example’ with linespoints

See also

Parametric Mode Demos.

Ranges

The optional ranges specify the region of the graph that will be displayed. Note that if you specify the range
as part of a plot command rather than using a separate set range statement, you will not be able to pan
or zoom the plot interactively, and will not be able to change the range later and then replot.

Syntax:

http://www.gnuplot.info/demo/param.html

88 gnuplot 4.6

[{<dummy-var>=}{{<min>}:{<max>}}]
[({{<min>}:{<max>}}]

The first form applies to the independent variable (xrange or trange, if in parametric mode). The second
form applies to the dependent variable yrange (and xrange, too, if in parametric mode). <dummy-var> is
a new name for the independent variable. (The defaults may be changed with set dummy.) The optional
<min> and <max> terms can be constant expressions or *.

In non-parametric mode, the order in which ranges must be given is xrange and yrange.

In parametric mode, the order for the plot command is trange, xrange, and yrange. The following plot
command shows setting the trange to [-pi:pi], the xrange to [-1.3:1.3] and the yrange to [-1:1] for the
duration of the graph:

plot [-pi:pi] [-1.3:1.3] [-1:1] sin(t),t**2

Note that the x2range and y2range cannot be specified here — set x2range and set y2range must be
used.

Ranges are interpreted in the order listed above for the appropriate mode. Once all those needed are
specified, no further ones must be listed, but unneeded ones cannot be skipped — use an empty range [] as
a placeholder.

* can be used to allow autoscaling of either of min and max. See also set autoscale (p. .

Ranges specified on the plot or splot command line affect only that graph; use the set xrange, set yrange,
etc., commands to change the default ranges for future graphs.

With time data, you must provide the range (in the same manner as the time appears in the datafile) within
quotes. gnuplot uses the timefmt string to read the value — see set timefmt (p. [154]).

Examples:

This uses the current ranges:
plot cos(x)

This sets the x range only:
plot [-10:30] sin(pi*x)/(pi*x)

This is the same, but uses t as the dummy-variable:
plot [t = -10 :30] sin(pi*t)/(pi*t)

This sets both the x and y ranges:
plot [-pi:pil [-3:3] tan(x), 1/x

This sets only the y range, and turns off autoscaling on both axes:
plot [] [-2:sin(5)*-8] sin(x)**besjoO(x)

This sets xmax and ymin only:
plot [:200] [-pi:] exp(sin(x))

This sets the x range for a timeseries:

set timefmt "%d/%m/%y %H:7%M"
plot ["1/6/93 12:00":"5/6/93 12:00"] ’timedata.dat’

Iteration

If many similar files or functions are to be plotted together, it may be convenient to do so by iterating over
a shared plot command.
Syntax:

plot for [<variable> = <start> : <end> {:<increment>}]
plot for [<variable> in "string of words"]

gnuplot 4.6 89

The scope of an iteration ends at the next comma or the end of the command, whichever comes first. Iteration
can not be nested.

This will plot one curve, sin(3x), because iteration ends at the comma

plot for [i=1:3] j=i, sin(j*x)

This will plot three curves because there is no comma after the definition of j

plot for [i=1:3] j=i sin(j*x)

Example:

plot for [dataset in "apples bananas"] dataset."dat" title dataset

In this example iteration is used both to generate a file name and a corresponding title.

Example:

file(n) = sprintf("dataset_%d.dat",n)
splot for [i=1:10] file(i) title sprintf("dataset %d",i)

This example defines a string-valued function that generates file names, and plots ten such files together.
The iteration variable (’i’ in this example) is treated as an integer, and may be used more than once.
Example:

set key left
plot for [n=1:4] x**n sprintf("%d",n)

This example plots a family of functions.

Example:
list = "apple banana cabbage daikon eggplant"
item(n) = word(list,n)
plot for [i=1:words(list)] item[i].".dat" title item(i)
list = "new stuff"
replot

This example steps through a list and plots once per item. Because the items are retrieved dynamically, you
can change the list and then replot.
Example:

list = "apple banana cabbage daikon eggplant"
plot for [i in list] i.".dat" title i

list = "new stuff"

replot

This is example does exactly the same thing as the previous example, but uses the string iterator form of
the command rather than an integer iterator.

Title

By default each plot is listed in the key by the corresponding function or file name. You can give an explicit
plot title instead using the title option.
Syntax:

title <text> | notitle [<ignored text>]
title columnheader | title columnheader (N)

where <text> is a quoted string or an expression that evaluates to a string. The quotes will not be shown
in the key.

There is also an option that will interpret the first entry in a column of input data (i.e. the column header)
as a text field, and use it as the key title. See datastrings (p. . This can be made the default by
specifying set key autotitle columnhead.

90 gnuplot 4.6

The line title and sample can be omitted from the key by using the keyword notitle. A null title (title
’?) is equivalent to notitle. If only the sample is wanted, use one or more blanks (title *). If notitle is
followed by a string this string is ignored.

If key autotitles is set (which is the default) and neither title nor notitle are specified the line title is the
function name or the file name as it appears on the plot command. If it is a file name, any datafile modifiers
specified will be included in the default title.

The layout of the key itself (position, title justification, etc.) can be controlled by set key. Please see set
key (p. for details.
Examples:
This plots y=x with the title 'x’:
plot x

This plots x squared with title "x~2" and file "data.1" with title "measured data":

plot x**2 title "x"2", ’data.l’ t "measured data"

This puts an untitled circular border around a polar graph:

set polar; plot my_function(t), 1 notitle

Plot multiple columns of data, each of which contains its own title in the file

plot for [i=1:4] ’data’ using i title columnhead

With

Functions and data may be displayed in one of a large number of styles. The with keyword provides the
means of selection.
Syntax:

with <style> { {linestyle | 1s <line_style>}
| {{linetype | 1t <line_type>}
|
|
|

{linewidth | lw <line_width>}
{linecolor | lc <colorspec>}
{pointtype | pt <point_type>}

{pointsize | ps <point_size>}
{fill | fs <fillstyle>}
{nohidden3d} {nocontours} {nosurface}

{palettel}}
by
where <style> is one of
lines dots steps errorbars xerrorbar xyerrorlines
points impulses fsteps errorlines xerrorlines yerrorbars
linespoints labels histeps financebars xyerrorbars yerrorlines
vectors
or
boxes candlesticks image circles
boxerrorbars filledcurves rgbimage ellipses
boxxyerrorbars histograms rgbalpha pm3d

boxplot

The first group of styles have associated line, point, and text properties. The second group of styles also have
fill properties. See fillstyle (p.[147]). Some styles have further sub-styles. See plotting styles (p. for
details of each.

A default style may be chosen by set style function and set style data.

gnuplot 4.6 91

By default, each function and data file will use a different line type and point type, up to the maximum
number of available types. All terminal drivers support at least six different point types, and re-use them, in
order, if more are required. To see the complete set of line and point types available for the current terminal,

type test (p.[172).

If you wish to choose the line or point type for a single plot, <line_type> and <point_type> may be specified.
These are positive integer constants (or expressions) that specify the line type and point type to be used for
the plot. Use test to display the types available for your terminal.

You may also scale the line width and point size for a plot by using <line_width> and <point_size>, which
are specified relative to the default values for each terminal. The pointsize may also be altered globally —
see set pointsize (p. for details. But note that both <point_size> as set here and as set by set
pointsize multiply the default point size — their effects are not cumulative. That is, set pointsize 2; plot
x w p ps 3 will use points three times default size, not six.

It is also possible to specify pointsize variable either as part of a line style or for an individual plot. In
this case one extra column of input is required, i.e. 3 columns for a 2D plot and 4 columns for a 3D splot.
The size of each individual point is determined by multiplying the global pointsize by the value read from
the data file.

If you have defined specific line type/width and point type/size combinations with set style line, one of
these may be selected by setting <line_style> to the index of the desired style.

If gnuplot was built with pm3d support, the special keyword palette is allowed for smooth color change of
lines, points and dots in splots. The color is chosen from a smooth palette which was set previously with the
command set palette. The color value corresponds to the z-value of the point coordinates or to the color
coordinate if specified by the 4th parameter in using. Both 2D and 3D plots (plot and splot commands)
can use palette colors as specified by either their fractional value or the corresponding value mapped to the
colorbox range. A palette color value can also be read from an explicitly specified input column in the using

specifier. See colors (p. , set palette (p.[137)), linetype (p. [123)).

The keyword nohidden3d applies only to plots made with the splot command. Normally the global option
set hidden3d applies to all plots in the graph. You can attach the nohidden3d option to any individual
plots that you want to exclude from the hidden3d processing. The individual elements other than surfaces
(i.e. lines, dots, labels, ...) of a plot marked nohidden3d will all be drawn, even if they would normally be
obscured by other plot elements.

Similarly, the keyword nocontours will turn off contouring for an individual plot even if the global property
set contour is active.

Similarly, the keyword nosurface will turn off the 3D surface for an individual plot even if the global
property set surface is active.

The keywords may be abbreviated as indicated.

Note that the linewidth, pointsize and palette options are not supported by all terminals.
Examples:

This plots sin(x) with impulses:

plot sin(x) with impulses

This plots x with points, x**2 with the default:
plot x w points, x**2

This plots tan(x) with the default function style, file "data.1" with lines:
plot [1 [-2:5] tan(x), ’data.l1’ with 1

This plots "leastsq.dat" with impulses:
plot ’leastsq.dat’ w i

This plots the data file "population" with boxes:
plot ’population’ with boxes

This plots "exper.dat" with errorbars and lines connecting the points (errorbars require three or four
columns):

92 gnuplot 4.6

plot ’exper.dat’ w lines, ’exper.dat’ notitle w errorbars

Another way to plot "exper.dat" with errorlines (errorbars require three or four columns):

plot ’exper.dat’ w errorlines

This plots sin(x) and cos(x) with linespoints, using the same line type but different point types:

plot sin(x) with linesp 1t 1 pt 3, cos(x) with linesp 1t 1 pt 4

This plots file "data" with points of type 3 and twice usual size:
plot ’data’ with points pointtype 3 pointsize 2

This plots file "data" with variable pointsize read from column 4

plot ’data’ using 1:2:4 with points pt 5 pointsize variable

This plots two data sets with lines differing only by weight:
plot ’dl’ t "good" w 1 1t 2 1w 3, ’d2’ t "bad" w1l 1t 2 1w 1

This plots filled curve of x*x and a color stripe:

plot x*x with filledcurve closed, 40 with filledcurve y1=10

This plots x*x and a color box:
plot x*x, (x>=-5 && x<=56 7 40 : 1/0) with filledcurve y1=10 1t 8

This plots a surface with color lines:

splot x*x-y*y with line palette

This plots two color surfaces at different altitudes:

splot x*x-y*y with pm3d, x*x+y*y with pm3d at t

Print

The print command prints the value of <expression> to the screen. It is synonymous with pause 0.
<expression> may be anything that gnuplot can evaluate that produces a number, or it can be a string.

Syntax:

print <expression> {, <expression>, ...}

See expressions (p. . The output file can be set with set print.

Pwd

The pwd command prints the name of the working directory to the screen.

Note that if you wish to store the current directory into a string variable or use it in string expressions, then
you can use variable GPVAL_PWD, see show variables all (p. [155)).

Quit

The exit and quit commands and END-OF-FILE character will exit gnuplot. Each of these commands
will clear the output device (as does the clear command) before exiting.

gnuplot 4.6 93

Raise

Syntax:

raise {plot_window_nb}

The raise command raises (opposite to lower) plot window(s) associated with the interactive terminal of
your gnuplot session, i.e. pm, win, wxt or x11. It puts the plot window to front (top) in the z-order
windows stack of the window manager of your desktop.

As x11 and wxt support multiple plot windows, then by default they raise these windows in descending
order of most recently created on top to the least recently created on bottom. If a plot number is supplied
as an optional parameter, only the associated plot window will be raised if it exists.

The optional parameter is ignored for single plot-windows terminal, i.e. pm and win.

If the window is not raised under X11, then perhaps the plot window is running in a different X11 session
(telnet or ssh session, for example), or perhaps raising is blocked by your window manager policy setting.

Refresh

The refresh command is similar to replot, with two major differences. refresh reformats and redraws the
current plot using the data already read in. This means that you can use refresh for plots with in-line
data (pseudo-device ’-’) and for plots from datafiles whose contents are volatile. You cannot use the refresh
command to add new data to an existing plot.

Mousing operations, in particular zoom and unzoom, will use refresh rather than replot if appropriate.
Example:

plot ’datafile’ volatile with lines, ’-’ with labels
100 200 "Special point"

e

Various mousing operations go here

set title "Zoomed in view"

set term post

set output ’zoom.ps’

refresh

Replot

The replot command without arguments repeats the last plot or splot command. This can be useful for
viewing a plot with different set options, or when generating the same plot for several devices.

Arguments specified after a replot command will be added onto the last plot or splot command (with
an implied ' separator) before it is repeated. replot accepts the same arguments as the plot and splot
commands except that ranges cannot be specified. Thus you can use replot to plot a function against the
second axes if the previous command was plot but not if it was splot.

N.B. — use of
plot ’-’ ; ... ; replot

is not recommended, because it will require that you type in the data all over again. In most cases you can
use the refresh command instead, which will redraw the plot using the data previously read in.

Note that replot does not work in multiplot mode, since it reproduces only the last plot rather than the
entire screen.

See also command-line-editing (p. for ways to edit the last plot (p. (splot (p.|167))) command.

See also show plot (p. [133)) to show the whole current plotting command, and the possibility to copy it
into the history (p.[69).

94 gnuplot 4.6
Reread

The reread command causes the current gnuplot command file, as specified by a load command or on the
command line, to be reset to its starting point before further commands are read from it. This essentially
implements an endless loop of the commands from the beginning of the command file to the reread command.
(But this is not necessarily a disaster — reread can be very useful when used in conjunction with if.) The
reread command has no effect if input from standard input.

Examples:

Suppose the file "looper" contains the commands

a=a+l
plot sin(x*a)
pause -1

if (a<5) reread

and from within gnuplot you submit the commands

a=0
load ’looper’

The result will be five plots (separated by the pause message).

Suppose the file "data" contains six columns of numbers with a total yrange from 0 to 10; the first is x and
the next are five different functions of x. Suppose also that the file "plotter" contains the commands

c_p = c_p+l
plot "$0" using 1l:c_p with lines linetype c_p
if(c_p < n_p) reread

and from within gnuplot you submit the commands

n_p=6

c_p=1

unset key

set yrange [0:10]

set multiplot

call ’plotter’ ’data’
unset multiplot

The result is a single graph consisting of five plots. The yrange must be set explicitly to guarantee that the
five separate graphs (drawn on top of each other in multiplot mode) will have exactly the same axes. The
linetype must be specified; otherwise all the plots would be drawn with the same type. See animate.dem in
demo directory for an animated example.

Reset

The reset command causes all graph-related options that can be set with the set command to take on their
default values. This command is useful, e.g., to restore the default graph settings at the end of a command
file, or to return to a defined state after lots of settings have been changed within a command file. Please
refer to the set command to see the default values that the various options take.

The following are not affected by reset.

‘set term‘ ‘set output ‘set loadpath‘ ‘set fontpath‘ ‘set linetype°
‘set encoding‘ ‘set decimalsign‘ ‘set locale‘ ‘set psdir‘

reset errors clears only the error state variables GPVAL_ERRNO and GPVAL_ERRMSG.
reset bind restores all hotkey bindings to their default state.

gnuplot 4.6 95

Save

The save command saves user-defined functions, variables, the set term status, all set options, or all of
these, plus the last plot (splot) command to the specified file.

Syntax:
save {<option>} ’<filename>’

where <option> is functions, variables, terminal or set. If no option is used, gnuplot saves functions,
variables, set options and the last plot (splot) command.

saved files are written in text format and may be read by the load command. For save with the set option
or without any option, the terminal choice and the output filename are written out as a comment, to get
an output file that works in other installations of gnuplot, without changes and without risk of unwillingly
overwriting files.

save terminal will write out just the terminal status, without the comment marker in front of it. This is
mainly useful for switching the terminal setting for a short while, and getting back to the previously set
terminal, afterwards, by loading the saved terminal status. Note that for a single gnuplot session you may
rather use the other method of saving and restoring current terminal by the commands set term push and
set term pop, see set term (p. .

The filename must be enclosed in quotes.

The special filename "-" may be used to save commands to standard output. On systems which support
a popen function (Unix), the output of save can be piped through an external program by starting the
file name with a ’|’. This provides a consistent interface to gnuplot’s internal settings to programs which
communicate with gnuplot through a pipe. Please see help for batch/interactive (p. for more details.

Examples:
save ’work.gnu’
save functions ’func.dat’
save var ’var.dat’
save set ’options.dat’
save term ’myterm.gnu’
save ’-’
save ’|grep title >t.gp’

Set-show

The set command can be used to set lots of options. No screen is drawn, however, until a plot, splot, or
replot command is given.

The show command shows their settings; show all shows all the settings.

Options changed using set can be returned to the default state by giving the corresponding unset command.
See also the reset (p. command, which returns all settable parameters to default values.

If a variable contains time/date data, show will display it according to the format currently defined by
set timefmt, even if that was not in effect when the variable was initially defined. The set and unset
commands may optionally contain an iteration clause. See iteration (p. [70)).

Angles

By default, gnuplot assumes the independent variable in polar graphs is in units of radians. If set angles
degrees is specified before set polar, then the default range is [0:360] and the independent variable has
units of degrees. This is particularly useful for plots of data files. The angle setting also applies to 3D
mapping as set via the set mapping command.

Syntax:
set angles {degrees | radians}
show angles

96 gnuplot 4.6

The angle specified in set grid polar is also read and displayed in the units specified by set angles.

set angles also affects the arguments of the machine-defined functions sin(x), cos(x) and tan(x), and the
outputs of asin(x), acos(x), atan(x), atan2(x), and arg(x). It has no effect on the arguments of hyperbolic
functions or Bessel functions. However, the output arguments of inverse hyperbolic functions of complex
arguments are affected; if these functions are used, set angles radians must be in effect to maintain
consistency between input and output arguments.

x={1.0,0.1}

set angles radians

y=sinh(x)

print y #prints {1.16933, 0.154051}

print asinh(y) #prints {1.0, 0.1}

but

set angles degrees

y=sinh(x)

print y #prints {1.16933, 0.154051}

print asinh(y) #prints {57.29578, 5.729578}
See also

poldat.dem: polar plot using set angles demo.
Arrow

Arbitrary arrows can be placed on a plot using the set arrow command.

Syntax:
set arrow {<tag>} {from <position>} {tol|rto <position>}
{ {arrowstyle | as <arrow_style>}
| { {nohead | head | backhead | heads}
{size <length>,<angle>{,<backangle>}}
{filled | empty | nofilled}
{front | back}
{ {linestyle | 1ls <line_style>}
| {linetype | 1t <line_type>}
{linewidth | 1w <line_width} } } }

unset arrow {<tag>}
show arrow {<tag>}

<tag> is an integer that identifies the arrow. If no tag is given, the lowest unused tag value is assigned
automatically. The tag can be used to delete or change a specific arrow. To change any attribute of an
existing arrow, use the set arrow command with the appropriate tag and specify the parts of the arrow to
be changed.

The <position>s are specified by either x,y or x,y,z, and may be preceded by first, second, graph, screen,
or character to select the coordinate system. Unspecified coordinates default to 0. The end points can
be specified in one of five coordinate systems — first or second axes, graph, screen, or character. See
coordinates (p. for details. A coordinate system specifier does not carry over from the "from" position
to the "to" position. Arrows outside the screen boundaries are permitted but may cause device errors. If the
end point is specified by "rto" instead of "to" it is drawn relatively to the start point. For linear axes, graph
and screen coordinates, the distance between the start and the end point corresponds to the given relative
coordinate. For logarithmic axes, the relative given coordinate corresponds to the factor of the coordinate
between start and end point. Thus, a negative relative value or zero are not allowed for logarithmic axes.

Specifying nohead produces an arrow drawn without a head — a line segment. This gives you yet another
way to draw a line segment on the plot. By default, an arrow has a head at its end. Specifying backhead
draws an arrow head at the start point of the arrow while heads draws arrow heads on both ends of the
line. Not all terminal types support double-ended arrows.

http://www.gnuplot.info/demo/poldat.html

gnuplot 4.6 97

Head size can be controlled by size <length>,<angle> or size <length>,<angle>,<backangle>, where
<length> defines length of each branch of the arrow head and <angle> the angle (in degrees) they make
with the arrow. <Length> is in x-axis units; this can be changed by first, second, graph, screen, or
character before the <length>; see coordinates (p. for details. <Backangle> only takes effect when
filled or empty is also used. Then, <backangle> is the angle (in degrees) the back branches make with the
arrow (in the same direction as <angle>). The fig terminal has a restricted backangle function. It supports
three different angles. There are two thresholds: Below 70 degrees, the arrow head gets an indented back
angle. Above 110 degrees, the arrow head has an acute back angle. Between these thresholds, the back line
is straight.

Specifying filled produces filled arrow heads (if heads are used). Filling is supported on filled-polygon
capable terminals, see help of pm3d (p. for their list, otherwise the arrow heads are closed but not
filled. The same result (closed but not filled arrow head) is reached by specifying empty. Further, filling and
outline is obviously not supported on terminals drawing arrows by their own specific routines, like metafont,
metapost, latex or tgif.

The line style may be selected from a user-defined list of line styles (see set style line (p. [149))) or
may be defined here by providing values for <line_type> (an index from the default list of styles) and/or
<line-width> (which is a multiplier for the default width).

Note, however, that if a user-defined line style has been selected, its properties (type and width) cannot be
altered merely by issuing another set arrow command with the appropriate index and 1t or lw.

If front is given, the arrow is written on top of the graphed data. If back is given (the default), the arrow
is written underneath the graphed data. Using front will prevent an arrow from being obscured by dense
data.

Examples:
To set an arrow pointing from the origin to (1,2) with user-defined style 5, use:

set arrow to 1,2 1s 5

To set an arrow from bottom left of plotting area to (-5,5,3), and tag the arrow number 3, use:
set arrow 3 from graph 0,0 to -5,5,3

To change the preceding arrow to end at 1,1,1, without an arrow head and double its width, use:
set arrow 3 to 1,1,1 nohead 1w 2

To draw a vertical line from the bottom to the top of the graph at x=3, use:
set arrow from 3, graph O to 3, graph 1 nohead

To draw a vertical arrow with T-shape ends, use:
set arrow 3 from 0,-5 to 0,5 heads size screen 0.1,90

To draw an arrow relatively to the start point, where the relative distances are given in graph coordinates,
use:
set arrow from 0,-5 rto graph 0.1,0.1

To draw an arrow with relative end point in logarithmic x axis, use:
set logscale x
set arrow from 100,-5 rto 10,10

This draws an arrow from 100,-5 to 1000,5. For the logarithmic x axis, the relative coordinate 10 means
"factor 10" while for the linear y axis, the relative coordinate 10 means "difference 10".

To delete arrow number 2, use:
unset arrow 2

To delete all arrows, use:
unset arrow

To show all arrows (in tag order), use:
show arrow

arrows demos.

http://gnuplot.sourceforge.net/demo/arrowstyle.html

98 gnuplot 4.6

Autoscale

Autoscaling may be set individually on the x, y or z axis or globally on all axes. The default is to autoscale
all axes. If you want to autoscale based on a subset of the plots in the figure, you can mark the other ones
with the flag noautoscale. See datafile (p. .

Syntax:

set autoscale {<axes>{|min|max|fixmin|fixmax|fix} | fix | keepfix}
unset autoscale {<axes>}
show autoscale

where <axes> is either x, y, z, cb, x2, y2 or xy. A keyword with min or max appended (this cannot
be done with xy) tells gnuplot to autoscale just the minimum or maximum of that axis. If no keyword is
given, all axes are autoscaled.

A keyword with fixmin, fixmax or fix appended tells gnuplot to disable extension of the axis range to the
next tic mark position, for autoscaled axes using equidistant tics; set autoscale fix sets this for all axes.
Command set autoscale keepfix autoscales all axes while keeping the fix settings.

When autoscaling, the axis range is automatically computed and the dependent axis (y for a plot and z for
splot) is scaled to include the range of the function or data being plotted.
If autoscaling of the dependent axis (y or z) is not set, the current y or z range is used.

Autoscaling the independent variables (x for plot and x,y for splot) is a request to set the domain to match
any data file being plotted. If there are no data files, autoscaling an independent variable has no effect. In
other words, in the absence of a data file, functions alone do not affect the x range (or the y range if plotting

z = f(xy)).

Please see set xrange (p. [159)) for additional information about ranges.

The behavior of autoscaling remains consistent in parametric mode, (see set parametric (p. [133])). How-
ever, there are more dependent variables and hence more control over x, y, and z axis scales. In parametric

mode, the independent or dummy variable is t for plots and u,v for splots. autoscale in parametric mode,
then, controls all ranges (t, u, v, x, y, and z) and allows x, y, and z to be fully autoscaled.

Autoscaling works the same way for polar mode as it does for parametric mode for plot, with the extension
that in polar mode set dummy can be used to change the independent variable from t (see set dummy

(p.[110)).

When tics are displayed on second axes but no plot has been specified for those axes, x2range and y2range
are inherited from xrange and yrange. This is done before xrange and yrange are autoextended to a whole
number of tics, which can cause unexpected results. You can use the fixmin or fixmax options to avoid
this.

Examples:

This sets autoscaling of the y axis (other axes are not affected):

set autoscale y

This sets autoscaling only for the minimum of the y axis (the maximum of the y axis and the other axes are
not affected):

set autoscale ymin

This disables extension of the x2 axis tics to the next tic mark, thus keeping the exact range as found in the
plotted data and functions:

set autoscale x2fixmin
set autoscale x2fixmax

This sets autoscaling of the x and y axes:

set autoscale xy

This sets autoscaling of the x, y, z, x2 and y2 axes:

set autoscale

gnuplot 4.6 99

This disables autoscaling of the x, y, z, x2 and y2 axes:

unset autoscale

This disables autoscaling of the z axis only:

unset autoscale z

Parametric mode

When in parametric mode (set parametric), the xrange is as fully scalable as the y range. In other words,
in parametric mode the x axis can be automatically scaled to fit the range of the parametric function that
is being plotted. Of course, the y axis can also be automatically scaled just as in the non-parametric case.
If autoscaling on the x axis is not set, the current x range is used.

Data files are plotted the same in parametric and non-parametric mode. However, there is a difference
in mixed function and data plots: in non-parametric mode with autoscaled x, the x range of the datafile
controls the x range of the functions; in parametric mode it has no influence.

For completeness a last command set autoscale t is accepted. However, the effect of this "scaling" is
very minor. When gnuplot determines that the t range would be empty, it makes a small adjustment if
autoscaling is true. Otherwise, gnuplot gives an error. Such behavior may, in fact, not be very useful and
the command set autoscale t is certainly questionable.

splot extends the above ideas as you would expect. If autoscaling is set, then x, y, and z ranges are computed
and each axis scaled to fit the resulting data.

Polar mode

When in polar mode (set polar), the xrange and the yrange may be left in autoscale mode. If set rrange
is used to limit the extent of the polar axis, then xrange and yrange will adjust to match this automatically.
However, explicit xrange and yrange commands can later be used to make further adjustments. See set
rrange (p. . The trange may also be autoscaled. Note that if the trange is contained within one
quadrant, autoscaling will produce a polar plot of only that single quadrant.

Explicitly setting one or two ranges but not others may lead to unexpected results. See also

polar demos.

Bars

The set bars command controls the tics at the ends of error bars, and also at the end of the whiskers
belonging to a boxplot.

Syntax:

set bars {small | large | fullwidth | <size>} {front | back}
unset bars
show bars

small is a synonym for 0.0, and large for 1.0. The default is 1.0 if no size is given.

The keyword fullwidth is relevant only to boxplots and to histograms with errorbars. It sets the width of
the errorbar ends to be the same as the width of the associated box. It does not change the width of the
box itself.

The front and back keywords are relevant only to errorbars attached to filled rectangles (boxes, candlesticks,
histograms).

Bind

Show the current state of all hotkey bindings. See bind (p. .

http://www.gnuplot.info/demo/poldat.html

100 gnuplot 4.6

Bmargin

The command set bmargin sets the size of the bottom margin. Please see set margin (p.[125]) for details.

Border

The set border and unset border commands control the display of the graph borders for the plot and
splot commands. Note that the borders do not necessarily coincide with the axes; with plot they often do,
but with splot they usually do not.

Syntax:
set border {<integer>} {front | back} {linewidth | 1lw <line_width>}
{{linestyle | 1s <line_style>} | {linetype | 1t <line_type>1}}
unset border
show border

With a splot displayed in an arbitrary orientation, like set view 56,103, the four corners of the x-y plane
can be referred to as "front", "back", "left" and "right". A similar set of four corners exist for the top surface,
of course. Thus the border connecting, say, the back and right corners of the x-y plane is the "bottom right
back" border, and the border connecting the top and bottom front corners is the "front vertical". (This
nomenclature is defined solely to allow the reader to figure out the table that follows.)

The borders are encoded in a 12-bit integer: the bottom four bits control the border for plot and the sides
of the base for splot; the next four bits control the verticals in splot; the top four bits control the edges
on top of the splot. In detail, <integer> should be the sum of the appropriate entries from the following
table:

’ Graph Border Encoding ‘

Bit plot splot
1 bottom bottom left front
2 left bottom left back
4 top bottom right front
8 right bottom right back
16 | no effect left vertical
32 no effect back vertical
64 | no effect right vertical
128 | no effect front vertical
256 | no effect top left back
512 | no effect top right back
1024 | no effect top left front
2048 | no effect top right front

Various bits or combinations of bits may be added together in the command.
The default is 31, which is all four sides for plot, and base and z axis for splot.

In 2D plots the border is normally drawn on top of all plots elements (front). If you want the border to be
drawn behind the plot elements, use set border back.

Using the optional <line_style>, <line_type> and <line_width> specifiers, the way the border lines are
drawn can be influenced (limited by what the current terminal driver supports).

For plot, tics may be drawn on edges other than bottom and left by enabling the second axes — see set

xtics (p. [160)) for details.

If a splot draws only on the base, as is the case with "unset surface; set contour base", then the verticals
and the top are not drawn even if they are specified.

The set grid options 'back’, 'front’ and ’layerdefault’ also control the order in which the border lines are
drawn with respect to the output of the plotted data.

Examples:

Draw default borders:

gnuplot 4.6 101

set border

Draw only the left and bottom (plot) or both front and back bottom left (splot) borders:
set border 3

Draw a complete box around a splot:
set border 4095

Draw a topless box around a splot, omitting the front vertical:
set border 127+256+512 # or set border 1023-128

Draw only the top and right borders for a plot and label them as axes:
unset xtics; unset ytics; set x2tics; set y2tics; set border 12

Boxwidth

The set boxwidth command is used to set the default width of boxes in the boxes, boxerrorbars,
boxplot, candlesticks and histograms styles.
Syntax:

set boxwidth {<width>} {absolutel|relative}
show boxwidth

By default, adjacent boxes are extended in width until they touch each other. A different default width may
be specified using the set boxwidth command. Relative widths are interpreted as being a fraction of this
default width.

An explicit value for the boxwidth is interpreted as being a number of units along the current x axis
(absolute) unless the modifier relative is given. If the x axis is a log-scale (see set log (p.[124])) then the
value of boxwidth is truly "absolute" only at x=1; this physical width is maintained everywhere along the
axis (i.e. the boxes do not become narrower the value of x increases). If the range spanned by a log scale x
axis is far from x=1, some experimentation may be required to find a useful value of boxwidth.

The default is superseded by explicit width information taken from an extra data column in styles boxes
or boxerrorbars. In a four-column data set, the fourth column will be interpreted as the box width unless
the width is set to -2.0, in which case the width will be calculated automatically. See style boxes (p.
and style boxerrorbars (p. for more details.
To set the box width to automatic use the command

set boxwidth

or, for four-column data,
set boxwidth -2

The same effect can be achieved with the using keyword in plot:
plot ’file’ using 1:2:3:4:(-2)

To set the box width to half of the automatic size use
set boxwidth 0.5 relative

To set the box width to an absolute value of 2 use
set boxwidth 2 absolute

Clabel

gnuplot will vary the linetype used for each contour level when clabel is set. When this option on (the
default), a legend labels each linestyle with the z level it represents. It is not possible at present to separate
the contour labels from the surface key.

Syntax:

102 gnuplot 4.6

set clabel {’<format>’}
unset clabel
show clabel

The default for the format string is %8.3g, which gives three decimal places. This may produce poor label
alignment if the key is altered from its default configuration.

The first contour linetype, or only contour linetype when clabel is off, is the surface linetype +1; contour
points are the same style as surface points.

See also set contour (p. [105]).

Clip

gnuplot can clip data points and lines that are near the boundaries of a graph.

Syntax:

set clip <clip-type>
unset clip <clip-type>
show clip

Three clip types for points and lines are supported by gnuplot: points, one, and two. One, two, or all
three clip types may be active for a single graph. Note that clipping of color filled quadrangles drawn by
pm3d maps and surfaces is not controlled by this command, but by set pm3d cliplin and set pm3d
clip4in.

The points clip type forces gnuplot to clip (actually, not plot at all) data points that fall within but too
close to the boundaries. This is done so that large symbols used for points will not extend outside the
boundary lines. Without clipping points near the boundaries, the plot may look bad. Adjusting the x and
y ranges may give similar results.

Setting the one clip type causes gnuplot to draw a line segment which has only one of its two endpoints
within the graph. Only the in-range portion of the line is drawn. The alternative is to not draw any portion
of the line segment.

Some lines may have both endpoints out of range, but pass through the graph. Setting the two clip-type
allows the visible portion of these lines to be drawn.

In no case is a line drawn outside the graph.
The defaults are noclip points, clip one, and noclip two.
To check the state of all forms of clipping, use

show clip

For backward compatibility with older versions, the following forms are also permitted:

set clip
unset clip

set clip is synonymous with set clip points; unset clip turns off all three types of clipping.

Cntrparam

set cntrparam controls the generation of contours and their smoothness for a contour plot. show contour
displays current settings of cntrparam as well as contour.

Syntax:
set cntrparam { { linear
| cubicspline
| bspline

| points <n>
| order <n>

gnuplot 4.6 103

| levels { auto {<n>} | <n>
| discrete <z1> {,<z2>{,<z3>...}}
| incremental <start>, <incr> {,<end>}

}

show contour

This command has two functions. First, it sets the values of z for which contour points are to be determined
(by linear interpolation between data points or function isosamples.) Second, it controls the way contours
are drawn between the points determined to be of equal z. <n> should be an integral constant expression
and <zl>, <z2> ... any constant expressions. The parameters are:

linear, cubicspline, bspline — Controls type of approximation or interpolation. If linear, then straight
line segments connect points of equal z magnitude. If cubicspline, then piecewise-linear contours are
interpolated between the same equal z points to form somewhat smoother contours, but which may undulate.
If bspline, a guaranteed-smoother curve is drawn, which only approximates the position of the points of
equal-z.

points — Eventually all drawings are done with piecewise-linear strokes. This number controls the number
of line segments used to approximate the bspline or cubicspline curve. Number of cubicspline or bspline
segments (strokes) = points * number of linear segments.

order — Order of the bspline approximation to be used. The bigger this order is, the smoother the resulting
contour. (Of course, higher order bspline curves will move further away from the original piecewise linear
data.) This option is relevant for bspline mode only. Allowed values are integers in the range from 2 (linear)
to 10.

levels — Selection of contour levels, controlled by auto (default), discrete, incremental, and <n>, number
of contour levels.

For auto, <n> specifies a nominal number of levels; the actual number will be adjusted to give simple labels.
If the surface is bounded by zmin and zmax, contours will be generated at integer multiples of dz between
zmin and zmax, where dz is 1, 2, or 5 times some power of ten (like the step between two tic marks).

For levels discrete, contours will be generated at z = <zl1>, <z2> ... as specified; the number of discrete
levels sets the number of contour levels. In discrete mode, any set cntrparam levels <n> are ignored.

For incremental, contours are generated at values of z beginning at <start> and increasing by <increment>,
until the number of contours is reached. <end> is used to determine the number of contour levels, which
will be changed by any subsequent set cntrparam levels <n>. If the z axis is logarithmic, <increment>
will be interpreted as a factor, just like in set ztics.

If the command set cntrparam is given without any arguments specified, the defaults are used: linear, 5
points, order 4, 5 auto levels.
Examples:

set cntrparam bspline
set cntrparam points 7
set cntrparam order 10

To select levels automatically, 5 if the level increment criteria are met:

set cntrparam levels auto 5

To specify discrete levels at .1, .37, and .9:

set cntrparam levels discrete .1,1/exp(1),.9

To specify levels from 0 to 4 with increment 1:

set cntrparam levels incremental 0,1,4

To set the number of levels to 10 (changing an incremental end or possibly the number of auto levels):

set cntrparam levels 10

To set the start and increment while retaining the number of levels:

104 gnuplot 4.6

set cntrparam levels incremental 100,50

See also set contour (p. [105]) for control of where the contours are drawn, and set clabel (p. [101)) for
control of the format of the contour labels and linetypes.

See also
contours demo (contours.dem)
and

contours with user defined levels demo (discrete.dem).

Color box

The color scheme, i.e. the gradient of the smooth color with min_z and max_z values of pm3d’s palette, is
drawn in a color box unless unset colorbox.

set colorbox

set colorbox {

vertical | horizontal }

default | user }

origin x, y }

size x, y }

front | back }

noborder | bdefault | border [line style] }

N e

}
show colorbox
unset colorbox

Color box position can be default or user. If the latter is specified the values as given with the origin and
size subcommands are used. The box can be drawn after (front) or before (back) the graph or the surface.

The orientation of the color gradient can be switched by options vertical and horizontal.

origin x, y and size x, y are used only in combination with the user option. The x and y values are
interpreted as screen coordinates by default, and this is the only legal option for 3D plots. 2D plots,
including splot with set view map, allow any coordinate system to be specified. Try for example:

set colorbox horiz user origin .1,.02 size .8,.04

which will draw a horizontal gradient somewhere at the bottom of the graph.

border turns the border on (this is the default). noborder turns the border off. If an positive integer
argument is given after border, it is used as a line style tag which is used for drawing the border, e.g.:
set style line 2604 linetype -1 linewidth .4
set colorbox border 2604

will use line style 2604, a thin line with the default border color (-1) for drawing the border. bdefault
(which is the default) will use the default border line style for drawing the border of the color box.

The axis of the color box is called cb and it is controlled by means of the usual axes commands, i.e.
set/unset/show with cbrange, [m]cbtics, format cb, grid [m]cb, cblabel, and perhaps even cbdata,
[no]cbdtics, [no]cbmtics.

set colorbox without any parameter switches the position to default. unset colorbox resets the default
parameters for the colorbox and switches the colorbox off.

See also help for set pm3d (p. , set palette (p. , x11 pm3d (p. , and set style line
(p- [149).

Colornames

Gnuplot knows a limited number of color names. You can use these to define the color range spanned by a
pm3d palette, or to assign a terminal-independent color to a particular linetype or linestyle. To see the list
of known color names, use the command show colornames (p. [104)). Example:

http://www.gnuplot.info/demo/contours.html
http://www.gnuplot.info/demo/discrete.html

gnuplot 4.6 105

set style line 1 linecolor rgb "sea-green"

Contour

set contour enables contour drawing for surfaces. This option is available for splot only. It requires grid
data, see grid_data (p.[170]) for more details. If contours are desired from non-grid data, set dgrid3d can
be used to create an appropriate grid.

Syntax:
set contour {base | surface | both}
unset contour
show contour

The three options specify where to draw the contours: base draws the contours on the grid base where the
x/ytics are placed, surface draws the contours on the surfaces themselves, and both draws the contours on
both the base and the surface. If no option is provided, the default is base.

See also set cntrparam (p. [102)) for the parameters that affect the drawing of contours, and set clabel
(p. [101]) for control of labelling of the contours.

The surface can be switched off (see set surface (p. [151))), giving a contour-only graph. Though it is
possible to use set size to enlarge the plot to fill the screen, more control over the output format can be
obtained by writing the contour information to a file, and rereading it as a 2D datafile plot:

unset surface

set contour

set cntrparam ...

set table ’filename’

splot ...

unset table

contour info now in filename
set term <whatever>

plot ’filename’

In order to draw contours, the data should be organized as "grid data". In such a file all the points for a
single y-isoline are listed, then all the points for the next y-isoline, and so on. A single blank line (a line
containing no characters other than blank spaces and a carriage return and/or a line feed) separates one
y-isoline from the next. See also splot datafile (p. .

See also
contours demo (contours.dem)
and

contours with user defined levels demo (discrete.dem).

Data style

This form of the command is deprecated. Please see set style data (p. [147)).

Datatfile

The set datafile command options control interpretation of fields read from input data files by the plot,
splot, and fit commands. Six such options are currently implemented.

Set datafile fortran

The set datafile fortran command enables a special check for values in the input file expressed as Fortran
D or Q constants. This extra check slows down the input process, and should only be selected if you do

http://www.gnuplot.info/demo/contours.html
http://www.gnuplot.info/demo/discrete.html

106 gnuplot 4.6

in fact have datafiles containing Fortran D or Q constants. The option can be disabled again using unset
datafile fortran.

Set datafile nofpe_trap

The set datafile nofpe_trap command tells gnuplot not to re-initialize a floating point exception handler
before every expression evaluation used while reading data from an input file. This can significantly speed
data input from very large files at the risk of program termination if a floating-point exception is generated.

Set datafile missing

The set datafile missing command allows you to tell gnuplot what character string is used in a data file
to denote missing data. Exactly how this missing value will be treated depends on the using specifier of the
plot or splot command.

Syntax:

set datafile missing {"<string>"}
show datafile missing
unset datafile

Example:

Ignore entries containing IEEE NaN ("Not a Number") code
set datafile missing "NaN"

Example:

set style data linespoints
plot ’-’
110
2 20
37
4 40
5 50
e
set datafile missing "7"
plot -’
110
20
?
40
50

O O WN

plot ’-’ using 1:2
10
20
?
40
50

© O W=

plot ’-’ using 1:($2)
10
20
?
40
50

o O WN -

gnuplot 4.6 107

The first plot will recognize only the first datum in the "3 ?" line. It will use the single-datum-on-a-line
convention that the line number is "x" and the datum is "y", so the point will be plotted (in this case
erroneously) at (2,3).

The second and third plot commands will correctly ignore the middle line. The plotted line will connect
the points at (2,20) and (4,40).

The fourth plot will also correctly ignore the middle line, but the plotted line will not connect the points at
(2,20) and (4,40).

There is no default character for missing, but in many cases any non-parsible string of characters found
where a numerical value is expected will be treated as missing data.

Set datafile separator

The command set datafile separator "<char>" tells gnuplot that data fields in subsequent input files are
separated by <char> rather than by whitespace. The most common use is to read in csv (comma-separated
value) files written by spreadsheet or database programs. By default data fields are separated by whitespace.

Syntax:

set datafile separator {"<char>" | whitespace}

Examples:

Input file contains tab-separated fields
set datafile separator "\t"

Input file contains comma-separated values fields
set datafile separator ","

Set datafile commentschars

The set datafile commentschars command allows you to tell gnuplot what characters are used in a data
file to denote comments. Gnuplot will ignore rest of the line behind the specified characters if either of them
is the first non-blank character on the line.

Syntax:

set datafile commentschars {"<string>"}
show datafile commentschars
unset commentschars

Default value of the string is "#!" on VMS and "#" otherwise.
Then, the following line in a data file is completely ignored

#1234

but the following
1 #34

produces rather unexpected plot unless

set datafile missing ’#’°

is specified as well.
Example:

set datafile commentschars "#!%"

108 gnuplot 4.6

Set datafile binary

The set datafile binary command is used to set the defaults when reading binary data files. The syntax
matches precisely that used for commands plot and splot. See binary matrix (p. [168]) and binary
general (p. for details about the keywords that can be present in <binary list>.

Syntax:
set datafile binary <binary list>
show datafile binary
show datafile
unset datafile

Examples:

set datafile binary filetype=auto
set datafile binary array=(512,512) format="%uchar"

show datafile binary # list current settings

Decimalsign

The set decimalsign command selects a decimal sign for numbers printed into tic labels or set label
strings.

Syntax:
set decimalsign {<value> | locale {"<locale>"}}
unset decimalsign
show decimalsign

The argument <value> is a string to be used in place of the usual decimal point. Typical choices include
the period, ’.”, and the comma, ’,’, but others may be useful, too. If you omit the <value> argument, the
decimal separator is not modified from the usual default, which is a period. Unsetting decimalsign has the
same effect as omitting <value>.

Example:

Correct typesetting in most European countries requires:
set decimalsign ’,°’

Please note: If you set an explicit string, this affects only numbers that are printed using gnuplot’s gprintf()
formatting routine, include axis tics. It does not affect the format expected for input data, and it does not
affect numbers printed with the sprintf() formatting routine. To change the behavior of both input and
output formatting, instead use the form

set decimalsign locale

This instructs the program to use both input and output formats in accordance with the current setting of
the LC_ALL, LC_NUMERIC, or LANG environmental variables.

set decimalsign locale "foo"

This instructs the program to format all input and output in accordance with locale "foo", which must
be installed. If locale "foo" is not found then an error message is printed and the decimal sign setting is
unchanged. On linux systems you can get a list of the locales installed on your machine by typing "locale
-a". A typical linux locale string is of the form "sl.SL.LUTF-8". A typical Windows locale string is of the
form "Slovenian_Slovenia.1250" or "slovenian". Please note that interpretation of the locale settings is done
by the C library at runtime. Older C libraries may offer only partial support for locale settings such as the
thousands grouping separator character.

set decimalsign locale; set decimalsign "."

This sets all input and output to use whatever decimal sign is correct for the current locale, but over-rides
this with an explicit ’.” in numbers formatted using gnuplot’s internal gprintf() function.

gnuplot 4.6 109

Dgrid3d

The set dgrid3d command enables, and can set parameters for, non-grid to grid data mapping. See splot
grid_data (p. [170]) for more details about the grid data structure.

Syntax:
set dgrid3d {<rows>} {,{<cols>}}
{ splines |
gnorm {<norm>} |
(gauss | cauchy | exp | box | hann)
{kdensity} {<dx>} {,<dy>} }

unset dgrid3d
show dgrid3d

By default dgrid3d is disabled. When enabled, 3D data read from a file are always treated as a scattered
data set. A grid with dimensions derived from a bounding box of the scattered data and size as specified by
the row/col_size parameters is created for plotting and contouring. The grid is equally spaced in x (rows)
and in y (columns); the z values are computed as weighted averages or spline interpolations of the scattered
points’ z values. In other words, a regularly spaced grid is created and the a smooth approximation to the
raw data is evaluated for all grid points. This approximation is plotted in place of the raw data.

The number of columns defaults to the number of rows, which defaults to 10.

Several algorithms are available to calculate the approximation from the raw data. Some of these algorithms
can take additional parameters. These interpolations are such the closer the data point is to a grid point,
the more effect it has on that grid point.

The splines algorithm calculates an interpolation based on "thin plate splines". It does not take additional
parameters.

The gnorm algorithm calculates a weighted average of the input data at each grid point. Each data point
is weighted inversely by its distance from the grid point raised to the norm power. (Actually, the weights
are given by the inverse of dx"norm + dy norm, where dx and dy are the components of the separation of
the grid point from each data point. For some norms that are powers of two, specifically 4, 8, and 16, the
computation is optimized by using the Euclidean distance in the weight calculation, (dx~2+dy~2) norm/2.
However, any non-negative integer can be used.) The power of the norm can be specified as a single optional
parameter. This algorithm is the default.

Finally, several smoothing kernels are available to calculate weighted averages: z = Sum. w(d.i) * zi /
Sum_i w(d-i), where z_i is the value of the i-th data point and d_i is the distance between the current grid
point and the location of the i-th data point. All kernels assign higher weights to data points that are close
to the current grid point and lower weights to data points further away.

The following kernels are available:

gauss : w(d) = exp(-d*d)
cauchy : w(d) = 1/(1 + dxd)
exp : w(d) = exp(-d)
box : w(d) =1 if d<1
=0 otherwise
hann : w(d) = 0.5%(1-cos(2*xpixd)) if da<1
w(d) =0 otherwise

When using one of these five smoothing kernels, up to two additional numerical parameters can be specified:
dx and dy. These are used to rescale the coordinate differences when calculating the distance: d_i = sqrt(
((x-x1)/dx)**2 + ((y-y.)/dy)**2), where x,y are the coordinates of the current grid point and x_i,y i are
the coordinates of the i-th data point. The value of dy defaults to the value of dx, which defaults to 1. The
parameters dx and dy make it possible to control the radius over which data points contribute to a grid
point IN THE UNITS OF THE DATA ITSELF.

The optional keyword kdensity2d, which must come after the name of the kernel, but before the (optional)
scale parameters, modifies the algorithm so that the values calculated for the grid points are not divided by
the sum of the weights (z = Sum. w(d-i) * z_i). If all z_i are constant, this effectively plots a bivariate
kernel density estimate: a kernel function (one of the five defined above) is placed at each data point, the

110 gnuplot 4.6

sum of these kernels is evaluated at every grid point, and this smooth surface is plotted instead of the
original data. This is similar in principle to + what the smooth kdensity option does to 1D datasets. (See
kdensity2d.dem for usage demo)

A slightly different syntax is also supported for reasons of backwards compatibility. If no interpolation
algorithm has been explicitly selected, the qnorm algorithm is assumed. Up to three comma-separated,
optional parameters can be specified, which are interpreted as the the number of rows, the number of
columns, and the norm value, respectively.

The dgrid3d option is a simple scheme which replaces scattered data with weighted averages on a regular
grid. More sophisticated approaches to this problem exist and should be used to preprocess the data outside
gnuplot if this simple solution is found inadequate.

See also
dgrid3d.dem: dgrid3d demo.
and

scatter.dem: dgrid3d demo.

Dummy

The set dummy command changes the default dummy variable names.

Syntax:

set dummy {<dummy-var>} {,<dummy-var>}
show dummy

By default, gnuplot assumes that the independent, or "dummy", variable for the plot command is "t" if
in parametric or polar mode, or "x" otherwise. Similarly the independent variables for the splot command
are "u" and "v" in parametric mode (splot cannot be used in polar mode), or "x" and "y" otherwise.

It may be more convenient to call a dummy variable by a more physically meaningful or conventional name.
For example, when plotting time functions:

set dummy t
plot sin(t), cos(t)

At least one dummy variable must be set on the command; set dummy by itself will generate an error
message.
Examples:

set dummy u,v
set dummy ,s

The second example sets the second variable to s.

Encoding

The set encoding command selects a character encoding. Syntax:

set encoding {<value>}
set encoding locale
show encoding

Valid values are

default - tells a terminal to use its default encoding
is0_8859_1 - the most common Western European encoding used by many
Unix workstations and by MS-Windows. This encoding is
known in the PostScript world as ’ISO-Latinl’.
is0_8859_15 - a variant of iso0_8859_1 that includes the Euro symbol
is0_8859_2 used in Central and Eastern Europe

http://www.gnuplot.info/demo/dgrid3d.html
http://www.gnuplot.info/demo/scatter.html

gnuplot 4.6 111

is0_8859_9 - used in Turkey (also known as Latinb)

koi8r - popular Unix cyrillic encoding

koi8u - ukrainian Unix cyrillic encoding

cp437 - codepage for MS-DOS

cp850 - codepage for 0S/2, Western Europe

cp852 - codepage for 0S/2, Central and Eastern Europe

cp950 - MS version of Bigh (emf terminal only)

cpl250 - codepage for MS Windows, Central and Eastern Europe
cpl251 - codepage for 8-bit Russian, Serbian, Bulgarian, Macedonian
cpl254 - codepage for MS Windows, Turkish (superset of Latin5)
sjis - shift-JIS Japanese encoding

utf8 - variable-length (multibyte) representation of Unicode

entry point for each character

The command set encoding locale is different from the other options. It attempts to determine the current
locale from the runtime environment. On most systems this is controlled by the environmental variables
LC_ALL, LC_CTYPE, or LANG. This mechanism is necessary, for example, to pass multibyte character
encodings such as UTF-8 or EUC_JP to the wxt and cairopdf terminals. This command does not affect
the locale-specific representation of dates or numbers. See also set locale (p. and set decimalsign

(p- [108).

Generally you must set the encoding before setting the terminal type. Note that encoding is not supported
by all terminal drivers and that the device must be able to produce the desired non-standard characters.

Fit
The fit setting defines where the fit command writes its output.

Syntax:
set fit {logfile {"<filename>"}} {{no}errorvariables} {{no}quiet}
unset fit
show fit

The <filename> argument must be enclosed in single or double quotes.

If no filename is given or unset fit is used the log file is reset to its default value "fit.log" or the value of
the environmental variable FIT_LOG.

If the given logfile name ends with a / or \, it is interpreted to be a directory name, and the actual filename
will be "fit.log" in that directory.

If the errorvariables option is turned on, the error of each fitted parameter computed by fit will be copied
to a user-defined variable whose name is formed by appending "_err" to the name of the parameter itself.
This is useful mainly to put the parameter and its error onto a plot of the data and the fitted function, for
reference, as in:

set fit errorvariables

fit f(x) ’datafile’ using 1:2 via a, b
print "error of a is:", a_err

set label ’a=%6.2f’, a, ’+/- %6.2f’, a_err
plot ’datafile’ using 1:2, f(x)

By default the information written to the log file is also echoed to the terminal session. set fit quiet turns
off the echo.

Fontpath

The fontpath setting defines additional locations for font files searched when including font files. Currently
only the postscript terminal supports fontpath. If a file cannot be found in the current directory, the
directories in fontpath are tried. Further documentation concerning the supported file formats is included
in the terminal postscript section of the documentation.

112 gnuplot 4.6

Syntax:

set fontpath {"pathlistl" {"pathlist2"...}}
show fontpath

Path names may be entered as single directory names, or as a list of path names separated by a platform-
specific path separator, eg. colon (’:’) on Unix, semicolon (’;’) on DOS/Windows/OS/2 platforms. The show
fontpath, save and save set commands replace the platform-specific separator with a space character (’ ’)
for maximum portability. If a directory name ends with an exclamation mark (’!’) also the subdirectories
of this directory are searched for font files.

If the environmental variable GNUPLOT_FONTPATH is set, its contents are appended to fontpath. If it
is not set, a system dependent default value is used. It is set by testing several directories for existence when
using the fontpath the first time. Thus, the first call of set fontpath, show fontpath, save fontpath,
plot, or splot with embedded font files takes a little more time. If you want to save this time you may set
the environmental variable GNUPLOT_FONTPATH since probing is switched off, then. You can find out
which is the default fontpath by using show fontpath.

show fontpath prints the contents of the user-defined fontpath and the system fontpath separately. How-
ever, the save and save set commands save only the user-specified parts of fontpath.

For terminal drivers that access fonts by filename via the gd library, the font search path is controlled by
the environmental variable GDFONTPATH.

Format

The format of the tic-mark labels can be set with the set format command or with the set tics format
or individual set {axis}tics format commands.

Syntax:
set format {<axes>} {"<format-string>"}
set format {<axes>} {’<format-string>’}
show format

where <axes> is either x, y, xy, x2, y2, z, cb or nothing (which applies the format to all axes). The
following two commands are equivalent:

set format y "%.2f"
set ytics format "%.2f"

The length of the string is restricted to 100 characters. The default format is "% g", but other formats such
as "%.2f" or "%3.0em" are often desirable. The format "$%g$" is often desirable for LaTeX. If no format
string is given, the format will be returned to the default. If the empty string "" is given, tics will have no
labels, although the tic mark will still be plotted. To eliminate the tic marks, use unset xtics or set tics
scale 0.

Newline (\n) and enhanced text markup is accepted in the format string. Use double-quotes rather than
single-quotes in this case. See also syntax (p. [40]). Characters not preceded by "%" are printed verbatim.
Thus you can include spaces and labels in your format string, such as "%g m", which will put " m" after
each number. If you want "%" itself, double it: "%g %%".

See also set xtics (p. [160)) for more information about tic labels, and set decimalsign (p. [108)) for how
to use non-default decimal separators in numbers printed this way. See also

electron demo (electron.dem).

Gprintf

The string function gprintf("format",x) uses gnuplot’s own format specifiers, as do the gnuplot commands
set format, set timestamp, and others. These format specifiers are not the same as those used by the
standard C-language routine sprintf(). gprintf() accepts only a single variable to be formatted. Gnuplot
also provides an sprintf("format",x1,x2,...) routine if you prefer. For a list of gnuplot’s format options, see

format specifiers (p. [113)).

http://www.gnuplot.info/demo/electron.html

gnuplot 4.6 113

Format specifiers

The acceptable formats (if not in time/date mode) are:

’ Tic-mark label numerical format specifiers

Format Explanation
% floating point notation
%e or JE exponential notation; an ”e” or "E” before the power
%g or %G the shorter of %e (or %E) and %f
%x or %X hex
%o or %0 octal

A" mantissa to base 10

yal mantissa to base of current logscale

%s mantissa to base of current logscale; scientific power
%T power to base 10

%L power to base of current logscale

%S scientific power

%e character replacement for scientific power

%b mantissa of ISO/TEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)
YB prefix of ISO/IEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)
%P multiple of pi

A ’scientific’ power is one such that the exponent is a multiple of three. Character replacement of scientific
powers ("%c") has been implemented for powers in the range -18 to +18. For numbers outside of this range
the format reverts to exponential.

Other acceptable modifiers (which come after the "%" but before the format specifier) are "-", which left-
justifies the number; "+", which forces all numbers to be explicitly signed; " " (a space), which makes
positive numbers have a space in front of them where negative numbers have "-"; "#" which places a
decimal point after floats that have only zeroes following the decimal point; a positive integer, which defines
the field width; "0" (the digit, not the letter) immediately preceding the field width, which indicates that
leading zeroes are to be used instead of leading blanks; and a decimal point followed by a non-negative
integer, which defines the precision (the minimum number of digits of an integer, or the number of digits
following the decimal point of a float).

Some systems may not support all of these modifiers but may also support others; in case of doubt, check
the appropriate documentation and then experiment.

Examples:
set format
set format

y "%t"; set ytics (5,10) # "5.0" and "1.0"
y "%s"; set ytics (500,1000) # "500" and "1.0"

set format y "%+-12.3f"; set ytics(12345) # "+12345.000 "

set format y "%.2t*107%+03T"; set ytic(12345)# "1.23%107+04"

set format y "%s*10"{%S}"; set ytic(12345) # "12.345%10°{3}"

set format y "%s %cg"; set ytic(12345) # "12.345 kg"

set format y "%.OP pi"; set ytic(6.283185) # "2 pi"

set format y "%.0f%%"; set ytic(50) # "50%"

set log y 2; set format y ’%1’; set ytics (1,2,3)
#displays "1.0", "1.0" and "1.5" (since 3 is 1.5 * 271)
There are some problem cases that arise when numbers like 9.999 are printed with a format that requires

both rounding and a power.

If the data type for the axis is time/date, the format string must contain valid codes for the ’strftime’
function (outside of gnuplot, type "man strftime"). See set timefmt (p. [154) for a list of the allowed
input format codes.

Time/date specifiers

In time/date mode, the acceptable formats are:

114 gnuplot 4.6

’ Tic-mark label Date/Time Format Specifiers

Format Explanation

%ha abbreviated name of day of the week
%A full name of day of the week

%b or %h abbreviated name of the month
%B full name of the month

%d day of the month, 01-31

%D shorthand for "%m/%d/%y" (only output)
WE shorthand for "%Y-%m-%d" (only output)
pA'S hour, 0-23 (one or two digits)

%H hour, 0023 (always two digits)

Al hour, 1-12 (one or two digits)

I hour, 01-12 (always two digits)

hj day of the year, 1-366

%m month, 01-12

%M minute, 0-60

%p ”7am” or "pm”

hr shorthand for "%I:%M:%S %p" (only output)

%R shorthand for %H:%M" (only output)

%S second, integer 0-60 on output, (double) on input
%s number of seconds since start of year 2000

T shorthand for "%H:%M:%S" (only output)

yAY week of the year (week starts on Sunday)

YA day of the week, 0-6 (Sunday = 0)

AUl week of the year (week starts on Monday)

hy year, 0-99 in range 1969-2068
wY year, 4-digit

Except for the non-numerical formats, these may be preceded by a "0" ("zero", not "oh") to pad the field
length with leading zeroes, and a positive digit, to define the minimum field width (which will be overridden
if the specified width is not large enough to contain the number). The %S format also accepts a precision
specifier so that fractional seconds can be written. There is a 24-character limit to the length of the printed
text; longer strings will be truncated.

Examples:

Suppose the text is "76/12/25 23:11:11". Then
set format x # defaults to "12/25/76" \n "23:11"
set format x "%A, %d ¥%b %Y" # "Saturday, 25 Dec 1976"
set format x "Y%r ¥%D" # "11:11:11 pm 12/25/76"

Suppose the text is "98/07/06 05:04:03.123456". Then
set format x "Y%1ly/%2m/%3d J01H:%02M:%06.3S" # "98/ 7/ 6 5:04:03.123"

Function style

This form of the command is deprecated. Please see set style function (p. [148]).

Functions

The show functions command lists all user-defined functions and their definitions.

Syntax:

show functions

For information about the definition and usage of functions in gnuplot, please see expressions (p. [25]).
See also

gnuplot 4.6 115

splines as user defined functions (spline.dem)

and

use of functions and complex variables for airfoils (airfoil.dem).

Grid

The set grid command allows grid lines to be drawn on the plot.

Syntax:
set grid {{noMm}xtics} {{no}{m}ytics} {{no}{m}ztics}
{{noHm}x2tics} {{not{m}y2tics}
{{no}{m}cbtics}
{polar {<angle>}}
{layerdefault | front | back}
{ {linestyle <major_linestyle>}
| {linetype | 1t <major_linetype>}
{linewidth | lw <major_linewidth>}
{ , {linestyle | 1s <minor_linestyle>}
| {linetype | 1t <minor_linetype>}
{linewidth | 1w <minor_linewidth>} } }
unset grid
show grid

The grid can be enabled and disabled for the major and/or minor tic marks on any axis, and the linetype
and linewidth can be specified for major and minor grid lines, also via a predefined linestyle, as far as the
active terminal driver supports this.

Additionally, a polar grid can be selected for 2D plots — circles are drawn to intersect the selected tics, and
radial lines are drawn at definable intervals. (The interval is given in degrees or radians, depending on the
set angles setting.) Note that a polar grid is no longer automatically generated in polar mode.

The pertinent tics must be enabled before set grid can draw them; gnuplot will quietly ignore instructions
to draw grid lines at non-existent tics, but they will appear if the tics are subsequently enabled.

If no linetype is specified for the minor gridlines, the same linetype as the major gridlines is used. The
default polar angle is 30 degrees.

If front is given, the grid is drawn on top of the graphed data. If back is given, the grid is drawn underneath
the graphed data. Using front will prevent the grid from being obscured by dense data. The default setup,
layerdefault, is equivalent to back for 2D plots. In 3D plots the default is to split up the grid and the
graph box into two layers: one behind, the other in front of the plotted data and functions. Since hidden3d
mode does its own sorting, it ignores all grid drawing order options and passes the grid lines through the
hidden line removal machinery instead. These options actually affect not only the grid, but also the lines
output by set border and the various ticmarks (see set xtics (p. [L60])).

Z grid lines are drawn on the bottom of the plot. This looks better if a partial box is drawn around the plot

— see set border (p. [100)).

Hidden3d

The set hidden3d command enables hidden line removal for surface plotting (see splot (p.[167])). Some
optional features of the underlying algorithm can also be controlled using this command.

Syntax:
set hidden3d {defaults} |
{ {front|back}
{{offset <offset>} | {nooffsetl}}
{trianglepattern <bitpattern>}
{{undefined <level>} | {noundefined}}
{{no}altdiagonal}

http://www.gnuplot.info/demo/spline.html
http://www.gnuplot.info/demo/airfoil.html

116 gnuplot 4.6

{{no}bentover} }
unset hidden3d
show hidden3d

In contrast to the usual display in gnuplot, hidden line removal actually treats the given function or data
grids as real surfaces that can’t be seen through, so plot elements behind the surface will be hidden by it.
For this to work, the surface needs to have ’grid structure’ (see splot datafile (p. about this), and it
has to be drawn with lines or with linespoints.

When hidden3d is set, both the hidden portion of the surface and possibly its contours drawn on the base
(see set contour (p.) as well as the grid will be hidden. Each surface has its hidden parts removed
with respect to itself and to other surfaces, if more than one surface is plotted. Contours drawn on the
surface (set contour surface) don’t work.

Labels and arrows are always visible and are unaffected. The key box is never hidden by the surface. As of
gnuplot version 4.6, hidden3d also affects 3D plotting styles points, labels, vectors, and impulses even if
no surface is present in the graph. Individual plots within the graph may be explicitly excluded from this
processing by appending the extra option nohidden3d to the with specifier.

Hidden3d does not affect solid surfaces drawn using the pm3d mode. To achieve a similar effect purely
for pm3d surfaces, use instead set pm3d depthorder. To mix pm3d surfaces with normal hidden3d
processing, use the option set hidden3d front to force all elements included in hidden3d processing to be
drawn after any remaining plot elements. Then draw the surface twice, once with lines 1t -2 and a second
time with pm3d. The first instance will include the surface during calculation of occluded elements but
will not draw the surface itself.

Functions are evaluated at isoline intersections. The algorithm interpolates linearly between function points
or data points when determining the visible line segments. This means that the appearance of a function
may be different when plotted with hidden3d than when plotted with nohidden3d because in the latter
case functions are evaluated at each sample. Please see set samples (p. and set isosamples (p.
for discussion of the difference.

The algorithm used to remove the hidden parts of the surfaces has some additional features controllable by
this command. Specifying defaults will set them all to their default settings, as detailed below. If defaults
is not given, only explicitly specified options will be influenced: all others will keep their previous values, so
you can turn on/off hidden line removal via set {no}hidden3d, without modifying the set of options you
chose.

The first option, offset, influences the linetype used for lines on the ’back’ side. Normally, they are drawn
in a linetype one index number higher than the one used for the front, to make the two sides of the surface
distinguishable. You can specify a different linetype offset to add instead of the default 1, by offset <offset>.
Option nooffset stands for offset 0, making the two sides of the surface use the same linetype.

Next comes the option trianglepattern <bitpattern>. <bitpattern> must be a number between 0 and
7, interpreted as a bit pattern. Each bit determines the visibility of one edge of the triangles each surface
is split up into. Bit 0 is for the 'horizontal’ edges of the grid, Bit 1 for the ’vertical’ ones, and Bit 2 for
the diagonals that split each cell of the original grid into two triangles. The default pattern is 3, making all
horizontal and vertical lines visible, but not the diagonals. You may want to choose 7 to see those diagonals
as well.

The undefined <level> option lets you decide what the algorithm is to do with data points that are
undefined (missing data, or undefined function values), or exceed the given x-, y- or z-ranges. Such points
can either be plotted nevertheless, or taken out of the input data set. All surface elements touching a point
that is taken out will be taken out as well, thus creating a hole in the surface. If <level> = 3, equivalent to
option noundefined, no points will be thrown away at all. This may produce all kinds of problems elsewhere,
so you should avoid this. <level> = 2 will throw away undefined points, but keep the out-of-range ones.
<level> = 1, the default, will get rid of out-of-range points as well.

By specifying noaltdiagonal, you can override the default handling of a special case can occur if undefined
is active (i.e. <level> is not 3). Each cell of the grid-structured input surface will be divided in two triangles
along one of its diagonals. Normally, all these diagonals have the same orientation relative to the grid. If
exactly one of the four cell corners is excluded by the undefined handler, and this is on the usual diagonal,
both triangles will be excluded. However if the default setting of altdiagonal is active, the other diagonal

gnuplot 4.6 117

will be chosen for this cell instead, minimizing the size of the hole in the surface.

The bentover option controls what happens to another special case, this time in conjunction with the
trianglepattern. For rather crumply surfaces, it can happen that the two triangles a surface cell is divided
into are seen from opposite sides (i.e. the original quadrangle is 'bent over’), as illustrated in the following
ASCII art:

c----B

original quadrangle: A--B displayed quadrangle: I\ |
("set view 0,0") | /1 ("set view 75,75" perhaps) | \ |
[/ 1 AN

Cc--D AN

A D

If the diagonal edges of the surface cells aren’t generally made visible by bit 2 of the <bitpattern> there,
the edge CB above wouldn’t be drawn at all, normally, making the resulting display hard to understand.
Therefore, the default option of bentover will turn it visible in this case. If you don’t want that, you may
choose nobentover instead. See also

hidden line removal demo (hidden.dem)
and

complex hidden line demo (singulr.dem).

Historysize

Note: the command set historysize is only available when gnuplot has been configured to use the GNU
readline library.

Syntax:

set historysize <int>
unset historysize

When leaving gnuplot, the value of historysize is used for truncating the history to at most that much lines.
The default is 500. unset historysize will disable history truncation and thus allow an infinite number of
lines to be written to the history file.

Isosamples

The isoline density (grid) for plotting functions as surfaces may be changed by the set isosamples command.
Syntax:

set isosamples <iso_1> {,<iso_2>}
show isosamples

Each function surface plot will have <iso_1> iso-u lines and <iso_2> iso-v lines. If you only specify <iso_1>,
<is0_2> will be set to the same value as <iso_1>. By default, sampling is set to 10 isolines per u or v axis.
A higher sampling rate will produce more accurate plots, but will take longer. These parameters have no
effect on data file plotting.

An isoline is a curve parameterized by one of the surface parameters while the other surface parameter is
fixed. Isolines provide a simple means to display a surface. By fixing the u parameter of surface s(u,v), the
iso-u lines of the form c(v) = s(u0,v) are produced, and by fixing the v parameter, the iso-v lines of the form
c(u) = s(u,v0) are produced.

When a function surface plot is being done without the removal of hidden lines, set samples controls the
number of points sampled along each isoline; see set samples (p. and set hidden3d (p. . The
contour algorithm assumes that a function sample occurs at each isoline intersection, so change in samples
as well as isosamples may be desired when changing the resolution of a function surface/contour.

http://www.gnuplot.info/demo/hidden.html
http://www.gnuplot.info/demo/singulr.html

118 gnuplot 4.6

Key

The set key command enables a key (or legend) describing plots on a plot.

The contents of the key, i.e., the names given to each plotted data set and function and samples of the
lines and/or symbols used to represent them, are determined by the title and with options of the {s}plot
command. Please see plot title (p. and plot with (p. for more information.

Syntax:

set key {on|off} {default}

{{inside | outside} | {lmargin | rmargin | tmargin | bmargin}
| {at <position>}}
{left | right | center} {top | bottom | center}
{vertical | horizontal} {Left | Right}
{{no}opaque’
{{no}reverse} {{nol}invert}
{samplen <sample_length>} {spacing <vertical_spacing>}
{width <width_increment>}
{height <height_increment>}
{{no}autotitle {columnheader}}
{title "<text>"} {{no}enhanced}
{font "<face>,<size>"} {textcolor <colorspec>}
{{no}box { {linestyle | 1ls <line_style>}
| {linetype | 1t <line_type>}
{linewidth | 1w <line_width>}}3}

{maxcols {<max no. of columns> | autol}}
{maxrows {<max no. of rows> | autol}}

unset key

show key

The key contains a title and a sample (line, point, box) for each plot in the graph. The key may be turned
off by requesting set key off or unset key. Individual key entries may be turned off by using the notitle
keyword in the corresponding plot command.

Elements within the key are stacked according to vertical or horizontal. In the case of vertical, the key
occupies as few columns as possible. That is, elements are aligned in a column until running out of vertical
space at which point a new column is started. The vertical space may be limited using 'maxrows’. In the
case of horizontal, the key occupies as few rows as possible. The horizontal space may be limited using
‘maxcols’.

By default the key is placed in the upper right inside corner of the graph. The keywords left, right, top,
bottom, center, inside, outside, lmargin, rmargin, tmargin, bmargin (, above, over, below and
under) may be used to automatically place the key in other positions of the graph. Also an at <position>
may be given to indicate precisely where the plot should be placed. In this case, the keywords left, right, top,
bottom and center serve an analogous purpose for alignment. For more information, see key placement

(p- [119).

Justification of the plot titles within the key is controlled by Left or Right (default). The text and sample
can be reversed (reverse) and a box can be drawn around the key (box {...}) in a specified linetype and
linewidth, or a user-defined linestyle.

By default the key is built up one plot at a time. That is, the key symbol and title are drawn at the same
time as the corresponding plot. That means newer plots may sometimes place elements on top of the key.
set key opaque causes the key to be generated after all the plots. In this case the key area is filled with
background color and then the key symbols and titles are written. Therefore the key itself may obscure
portions of some plot elements. The default can be restored by set key noopaque.

By default the first plot label is at the top of the key and successive labels are entered below it. The invert
option causes the first label to be placed at the bottom of the key, with successive labels entered above it.
This option is useful to force the vertical ordering of labels in the key to match the order of box types in a
stacked histogram.

The <height_increment> is a number of character heights to be added to or subtracted from the height of

gnuplot 4.6 119

the key box. This is useful mainly when you are putting a box around the key and want larger borders
around the key entries.

All plotted curves of plots and splots are titled according to the default option autotitles. The automatic
generation of titles can be suppressed by noautotitles; then only those titles explicitly defined by (s)plot
... title ... will be drawn.

The command set key autotitle columnheader causes the first entry in each column of input data to be
interpreted as a text string and used as a title for the corresponding plot. If the quantity being plotted is a
function of data from several columns, gnuplot may be confused as to which column to draw the title from.
In this case it is necessary to specify the column explicitly in the plot command, e.g.

plot "datafile" using (($2+$3)/$4) title columnhead(3) with lines

An overall title can be put on the key (title "<text>") — see also syntax (p. for the distinction
between text in single- or double-quotes. The key title uses the same justification as do the plot titles.

The defaults for set key are on, right, top, vertical, Right, noreverse, noinvert, samplen 4, spacing
1.25, title "", and nobox. The default <linetype> is the same as that used for the plot borders. Entering
set key default returns the key to its default configuration.

The key is drawn as a sequence of lines, with one plot described on each line. On the right-hand side (or
the left-hand side, if reverse is selected) of each line is a representation that attempts to mimic the way
the curve is plotted. On the other side of each line is the text description (the line title), obtained from the
plot command. The lines are vertically arranged so that an imaginary straight line divides the left- and
right-hand sides of the key. It is the coordinates of the top of this line that are specified with the set key
command. In a plot, only the x and y coordinates are used to specify the line position. For a splot, x, y
and z are all used as a 3D location mapped using the same mapping as the graph itself to form the required
2D screen position of the imaginary line.

When using the TeX or other terminals where formatting information is embedded in the string, gnuplot
can only estimate the correctly exact width of the string for key positioning. If the key is to be positioned
at the left, it may be convenient to use the combination set key left Left reverse.

If splot is being used to draw contours, the contour labels will be listed in the key. If the alignment of these
labels is poor or a different number of decimal places is desired, the label format can be specified. See set

clabel (p. [101)) for details.

Examples:

This places the key at the default location:
set key default

This disables the key:

unset key

This places a key at coordinates 2,3.5,2 in the default (first) coordinate system:
set key at 2,3.5,2

This places the key below the graph:
set key below

This places the key in the bottom left corner, left-justifies the text, gives it a title, and draws a box around
it in linetype 3:
set key left bottom Left title ’Legend’ box 3

Key placement

To understand positioning, the best concept is to think of a region, i.e., inside/outside, or one of the margins.
Along with the region, keywords left /center /right (1/c/r) and top/center /bottom (t/c/b) control where
within the particular region the key should be placed.

When in inside mode, the keywords left (1), right (r), top (t), bottom (b), and center (c) push the key
out toward the plot boundary as illustrated:

120 gnuplot 4.6

t/1 t/c t/r

c/1 c c/r
b/1 b/c b/r

When in outside mode, automatic placement is similar to the above illustration, but with respect to the
view, rather than the graph boundary. That is, a border is moved inward to make room for the key outside of
the plotting area, although this may interfere with other labels and may cause an error on some devices. The
particular plot border that is moved depends upon the position described above and the stacking direction.
For options centered in one of the dimensions, there is no ambiguity about which border to move. For the
corners, when the stack direction is vertical, the left or right border is moved inward appropriately. When
the stack direction is horizontal, the top or bottom border is moved inward appropriately.

The margin syntax allows automatic placement of key regardless of stack direction. When one of the margins
Imargin (lm), rmargin (rm), tmargin (tm), and bmargin (bm) is combined with a single, non-conflicting
direction keyword, the following illustrated positions may contain the key:

1/tm c/tm r/tm

t/1m t/rm
c/1lm c/rm
b/1m b/rm

1/bm c/bm 1r/bm

Keywords above and over are synonymous with tmargin. For version compatibility, above or over without
an additional 1/¢/r or stack direction keyword uses center and horizontal. Keywords below and under
are synonymous with bmargin. For compatibility, below or under without an additional 1/c/r or stack
direction keyword uses center and horizontal. A further compatibility issue is that outside appearing
without an additional t/b/c or stack direction keyword uses top, right and vertical (i.e., the same as t/rm
above).

The <position> can be a simple x,y,z as in previous versions, but these can be preceded by one of five
keywords (first, second, graph, screen, character) which selects the coordinate system in which the
position of the first sample line is specified. See coordinates (p. @ for more details. The effect of
left, right, top, bottom, and center when <position> is given is to align the key as though it were text
positioned using the label command, i.e., left means left align with key to the right of <position>, etc.

Key samples

By default, each plot on the graph generates a corresponding entry in the key. This entry contains a plot
title and a sample line/point/box of the same color and fill properties as used in the plot itself. The font
and textcolor properties control the appearance of the individual plot titles that appear in the key. Setting
the textcolor to "variable" causes the text for each key entry to be the same color as the line or fill color for
that plot. This was the default in some earlier versions of gnuplot.

The length of the sample line can be controlled by samplen. The sample length is computed as the sum of
the tic length and <sample_length> times the character width. samplen also affects the positions of point
samples in the key since these are drawn at the midpoint of the sample line, even if the sample line itself is
not drawn.

The vertical spacing between lines is controlled by spacing. The spacing is set equal to the product of the
pointsize, the vertical tic size, and <vertical_spacing>. The program will guarantee that the vertical spacing
is no smaller than the character height.

The <width_increment> is a number of character widths to be added to or subtracted from the length of the
string. This is useful only when you are putting a box around the key and you are using control characters
in the text. gnuplot simply counts the number of characters in the string when computing the box width;
this allows you to correct it.

gnuplot 4.6 121

Label

Arbitrary labels can be placed on the plot using the set label command.

Syntax:

set label {<tag>} {"<label text>"} {at <position>}
{left | center | right}
{norotate | rotate {by <degrees>}}
{font "<name>{,<size>}"}
{noenhanced}
{front | back}
{textcolor <colorspec>}
{point <pointstyle> | nopoint}
{offset <offset>}

unset label {<tag>}

show label

The <position> is specified by either x,y or x,y,z, and may be preceded by first, second, graph, screen,
or character to select the coordinate system. See coordinates (p. for details.

The tag is an integer that is used to identify the label. If no <tag> is given, the lowest unused tag value is
assigned automatically. The tag can be used to delete or modify a specific label. To change any attribute of
an existing label, use the set label command with the appropriate tag, and specify the parts of the label to
be changed.

The <label text> can be a string constant, a string variable, or a string- valued expression. See strings
(p- 7 sprintf (p. , and gprintf (p. .

By default, the text is placed flush left against the point x,y,z. To adjust the way the label is positioned with
respect to the point x,y,z, add the justification parameter, which may be left, right or center, indicating
that the point is to be at the left, right or center of the text. Labels outside the plotted boundaries are
permitted but may interfere with axis labels or other text.

If rotate is given, the label is written vertically (if the terminal can do so, of course). If rotate by
<degrees> is given, conforming terminals will try to write the text at the specified angle; non-conforming
terminals will treat this as vertical text.

Font and its size can be chosen explicitly by font "<name>{,<size>}" if the terminal supports font
settings. Otherwise the default font of the terminal will be used.

Normally the enhanced text mode string interpretation, if enabled for the current terminal, is applied to all
text strings including label text. The noenhanced property can be used to exempt a specific label from
the enhanced text mode processing. The can be useful if the label contains underscores, for example. See
enhanced text (p. [23).

If front is given, the label is written on top of the graphed data. If back is given (the default), the label is
written underneath the graphed data. Using front will prevent a label from being obscured by dense data.

textcolor <colorspec> changes the color of the label text. <colorspec> can be a linetype, an rgb color, or
a palette mapping. See help for colorspec (p. and palette (p. . textcolor may be abbreviated
tc.

‘tc default‘ resets the text color to its default state.

‘tc 1t <n>°¢ sets the text color to that of line type <n>.

‘tc 1s <n>‘ sets the text color to that of line style <n>.

‘tc palette z¢ selects a palette color corresponding to the label z position.

‘tc palette cb <val>‘ selects a color corresponding to <val> on the colorbar.

‘tc palette fraction <val>‘, with O<=val<=1, selects a color corresponding to

the mapping [0:1] to grays/colors of the ‘palette‘.
‘tc rgb "#RRGGBB"‘ selects an arbitrary 24-bit RGB color.

If a <pointstyle> is given, using keywords 1t, pt and ps, see style (p. , a point with the given style
and color of the given line type is plotted at the label position and the text of the label is displaced slightly.
This option is used by default for placing labels in mouse enhanced terminals. Use nopoint to turn off the
drawing of a point near the label (this is the default).

122 gnuplot 4.6

The displacement defaults to 1,1 in pointsize units if a <pointstyle> is given, 0,0 if no <pointstyle> is
given. The displacement can be controlled by the optional offset <offset> where <offset> is specified
by either x,y or x,y,z, and may be preceded by first, second, graph, screen, or character to select the
coordinate system. See coordinates (p. for details.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string
according to the timefmt format string. See set xdata (p.|157)) and set timefmt (p. [154)).

The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.
Label coordinates and text can also be read from a data file (see labels (p. [54])).
Examples:
To set a label at (1,2) to "y=x", use:

set label "y=x" at 1,2

To set a Sigma of size 24, from the Symbol font set, at the center of the graph, use:
set label "S" at graph 0.5,0.5 center font "Symbol,24"

To set a label "y=x"2" with the right of the text at (2,3,4), and tag the label as number 3, use:
set label 3 "y=x"2" at 2,3,4 right

To change the preceding label to center justification, use:

set label 3 center

To delete label number 2, use:

unset label 2

To delete all labels, use:

unset label

To show all labels (in tag order), use:
show label

To set a label on a graph with a timeseries on the x axis, use, for example:

set timefmt "%d/%m/%y,%H:M"
set label "Harvest" at "25/8/93",1

To display a freshly fitted parameter on the plot with the data and the fitted function, do this after the fit,
but before the plot:

set label sprintf("a = %3.5g",par_a) at 30,15
bfit = gprintf("b = ¥%s*107%S",par_b)
set label bfit at 30,20

To display a function definition along with its fitted parameters, use:

f (x)=a+b*x

fit f(x) ’datafile’ via a,b

set label GPFUN_f at graph .05,.95

set label sprintf("a = Y%g", a) at graph .05,.90
set label sprintf("b = Y%g", b) at graph .05,.85

To set a label displaced a little bit from a small point:
set label ’origin’ at 0,0 point 1t 1 pt 2 ps 3 offset 1,-1

To set a label whose color matches the z value (in this case 5.5) of some point on a 3D splot colored using
pm3d:

set label ’text’ at 0,0,5.5 tc palette z

gnuplot 4.6 123

Linetype

The set linetype command allows you to redefine the basic linetypes used for plots. The command options
are identical to those for "set style line". Unlike line styles, redefinitions by set linetype are persistent;
they are not affected by reset.

For example, linetypes one and two default to red and green. If you redefine them like this:

set linetype 1 1lw 2 1lc rgb "blue" pointtype 6
set linetype 2 1lw 2 1lc rgb "forest-green" pointtype 8

everywhere that uses It 1 will now get a thick blue line rather than a thin red line (the previous default
meaning of 1t 1). This includes uses such as the definition of a temporary linestyle derived from the base
linetype 1.

Note: This command is new to gnuplot version 4.6. It supersedes a rather cryptic command in version 4.2
"set style increment user". The older command is now deprecated.

This mechanism can be used to define a set of personal preferences for the sequence of lines used in gnuplot.
The recommended way to do this is to add to the run-time initialization file ~ /.gnuplot a sequence of
commands like

if ((GPVAL_VERSION < 4.5) \
|1 ('strstrt(GPVAL_COMPILE_OPTIONS,"+USER_LINETYPES"))) \
exit

set linetype 1 lc rgb "dark-violet" 1w 2 pt O

set linetype 2 lc rgb "sea-green" lw 2 pt 7

set linetype 3 lc rgb "cyan" lw 2 pt 6 pi -1
set linetype 4 lc rgb "dark-red" lw 2 pt 5 pi -1
set linetype 5 lc rgb "blue" lw 2 pt 8

set linetype 6 lc rgb "dark-orange" lw 2 pt 3

set linetype 7 1lc rgb "black" lw 2 pt 11

set linetype 8 lc rgb "goldenrod" 1w 2

set linetype cycle 8

Every time you run gnuplot the line types will be initialized to these values. You may initialize as many
linetypes as you like. If you do not redefine, say, linetype 3 then it will continue to have the default properties
(in this case blue, pt 3, lw 1, etc). The first few lines of the example script insure that the commands will
be skipped by older versions of gnuplot.

Similar script files can be used to define theme-based color choices, or sets of colors optimized for a particular
plot type or output device.

The command set linetype cycle 8 tells gnuplot to re-use these definitions for the color and linewidth of
higher-numbered linetypes. That is, linetypes 9-16, 17-24, and so on will use this same sequence of colors
and widths. The point properties (pointtype, pointsize, pointinterval) are not affected by this command.
unset linetype cycle disables this feature. If the line properties of a higher numbered linetype are explicitly
defined, this takes precedence over the recycled low-number linetype properties.

Lmargin

The command set lmargin sets the size of the left margin. Please see set margin (p. [125)) for details.

Loadpath

The loadpath setting defines additional locations for data and command files searched by the call, load,
plot and splot commands. If a file cannot be found in the current directory, the directories in loadpath
are tried.

Syntax:
set loadpath {"pathlistl" {"pathlist2"...}}
show loadpath

124 gnuplot 4.6

Path names may be entered as single directory names, or as a list of path names separated by a platform-
specific path separator, eg. colon (’:’) on Unix, semicolon (’;’) on DOS/Windows/OS/2 platforms. The show
loadpath, save and save set commands replace the platform-specific separator with a space character (’
7).

If the environment variable GNUPLOT_LIB is set, its contents are appended to loadpath. However, show
loadpath prints the contents of set loadpath and GNUPLOT_LIB separately. Also, the save and save
set commands ignore the contents of GNUPLOT_LIB.

Locale

The locale setting determines the language with which {x,y,z}{d,m}tics will write the days and months.
Syntax:

set locale {"<locale>"}

<locale> may be any language designation acceptable to your installation. See your system documentation
for the available options. The command set locale "" will try to determine the locale from the LC_TIME,
LC_ALL, or LANG environment variables.

To change the decimal point locale, see set decimalsign (p. [108]). To change the character encoding to
the current locale, see set encoding (p. [110)).

Logscale

Syntax:

set logscale <axes> {<base>}
unset logscale <axes>
show logscale

where <axes> may be any combinations of x, x2, y, y2, z, cb, and r in any order. <base> is the base
of the log scaling (default is base 10). If no axes are specified, the command affects all axes except r. The
command unset logscale turns off log scaling for all axes.

Examples:
To enable log scaling in both x and z axes:

set logscale xz

To enable scaling log base 2 of the y axis:

set logscale y 2

To enable z and color log axes for a pm3d plot:

set logscale zcb

To disable z axis log scaling;:

unset logscale z

Macros

If command line macro substitution is enabled, then tokens in the command line of the form
@<stringvariablename> will be replaced by the text string contained in <stringvariablename>. See sub-

stitution (p. [39).
Syntax:

set macros

gnuplot 4.6 125

Mapping

If data are provided to splot in spherical or cylindrical coordinates, the set mapping command should be
used to instruct gnuplot how to interpret them.

Syntax:
set mapping {cartesian | spherical | cylindrical}

A cartesian coordinate system is used by default.

For a spherical coordinate system, the data occupy two or three columns (or using entries). The first two
are interpreted as the azimuthal and polar angles theta and phi (or "longitude" and "latitude"), in the units
specified by set angles. The radius r is taken from the third column if there is one, or is set to unity if
there is no third column. The mapping is:

x = r * cos(theta) * cos(phi)

y = r * sin(theta) * cos(phi)

z = r * sin(phi)

Note that this is a "geographic" spherical system, rather than a "polar" one (that is, phi is measured from
the equator, rather than the pole).

For a cylindrical coordinate system, the data again occupy two or three columns. The first two are interpreted
as theta (in the units specified by set angles) and z. The radius is either taken from the third column or
set to unity, as in the spherical case. The mapping is:

x = r * cos(theta)

y = r * sin(theta)

z =z

The effects of mapping can be duplicated with the using filter on the splot command, but mapping may
be more convenient if many data files are to be processed. However even if mapping is used, using may
still be necessary if the data in the file are not in the required order.

mapping has no effect on plot.

world.dem: mapping demos.

Margin

The margin is the distance between the plot border and the outer edge of the canvas. The size of the margin
is chosen automatically, but can be overridden by the set margin commands. show margin shows the
current settings. To alter the distance between the inside of the plot border and the data in the plot itself,
see set offsets (p. [132).

Syntax:
set bmargin {{at screen} <margin>}
set lmargin {{at screen} <margin>}
set rmargin {{at screen} <margin>}
set tmargin {{at screen} <margin>}
show margin

The default units of <margin> are character heights or widths, as appropriate. A positive value defines the
absolute size of the margin. A negative value (or none) causes gnuplot to revert to the computed value.
For 3D plots, only the left margin can be set using character units.

The keywords at screen indicates that the margin is specified as a fraction of the full drawing area. This
can be used to precisely line up the corners of individual 2D and 3D graphs in a multiplot. This placement
ignores the current values of set origin and set size, and is intended as an alternative method for positioning
graphs within a multiplot.

Normally the margins of a plot are automatically calculated based on tics, tic labels, axis labels, the plot
title, the timestamp and the size of the key if it is outside the borders. If, however, tics are attached to the
axes (set xtics axis, for example), neither the tics themselves nor their labels will be included in either the
margin calculation or the calculation of the positions of other text to be written in the margin. This can
lead to tic labels overwriting other text if the axis is very close to the border.

http://www.gnuplot.info/demo/world.html

126 gnuplot 4.6

Mouse

The command set mouse enables mouse actions for the current interactive terminal. It is usually enabled
by default in interactive mode, but disabled by default if commands are being read from a file.

There are two mouse modes. The 2D mode works for plot commands and for splot maps (i.e. set view
with z-rotation 0, 90, 180, 270 or 360 degrees, including set view map). In this mode the mouse position is
tracked and you can pan or zoom using the mouse buttons or arrow keys. Some terminals support toggling
individual plots on/off by clicking on the corresponding key title or on a separate widget.

For 3D graphs splot, the view and scaling of the graph can be changed with mouse buttons 1 and 2,
respectively. A vertical motion of Button 2 with the shift key held down changes the xyplane. If additionally
to these buttons the modifier <ctrl> is held down, the coordinate axes are displayed but the data are
suppressed. This is useful for large data sets.

Mousing is not available inside multiplot mode. When multiplot is completed using unset multiplot, then
the mouse will be turned on again but acts only on the most recent plot within the multiplot (like replot
does).

Syntax:

set mouse {doubleclick <ms>} {nodoubleclick} \
{{no}zoomcoordinates} \
{noruler | ruler {at x,y}} \
{polardistance{degltan} | nopolardistance} \
{format <string>} \
{clipboardformat <int>/<string>} \
{mouseformat <int>/<string>} \
{{no}labels {"labeloptions"}} \
{{no}zoomjump} {{nol}verbose}

unset mouse

The options noruler and ruler switch the ruler off and on, the latter optionally setting the origin at the
given coordinates. While the ruler is on, the distance in user units from the ruler origin to the mouse is
displayed continuously. By default, toggling the ruler has the key binding r’.

The option polardistance determines if the distance between the mouse cursor and the ruler is also shown
in polar coordinates (distance and angle in degrees or tangent (slope)). This corresponds to the default key
binding ’5’.

Choose the option labels to define persistent gnuplot labels using Button 2. The default is nolabels, which
makes Button 2 draw only a temporary label at the mouse position. Labels are drawn with the current
setting of mouseformat. The labeloptions string is passed to the set label command. The default is
"point pointstyle 1" which will plot a small plus at the label position. Temporary labels will disappear at
the next replot or mouse zoom operation. Persistent labels can be removed by holding the Ctrl-Key down
while clicking Button 2 on the label’s point. The threshold for how close you must be to the label is also
determined by the pointsize.

If the option verbose is turned on the communication commands are shown during execution. This option
can also be toggled by hitting 6 in the driver’s window. verbose is off by default.

Press ’h’ in the driver’s window for a short summary of the mouse and key bindings. This will also display
user defined bindings or hotkeys which can be defined using the bind command, see help for bind (p. .
Note, that user defined hotkeys may override the default bindings. See also help for bind (p. and

label (p. [121)).

Doubleclick

The doubleclick resolution is given in milliseconds and used for Button 1, which copies the current mouse
position to the clipboard. The default value is 300 ms. Setting the value to 0 ms triggers the copy on a
single click.

gnuplot 4.6 127

Mouseformat

The set mouse format command specifies a format string for sprintf() which determines how the mouse
cursor [x,y] coordinates are printed to the plot window and to the clipboard. The default is "% #g".

set mouse clipboardformat and set mouse mouseformat are used for formatting the text on Buttonl
and Button2 actions — copying the coordinates to the clipboard and temporarily annotating the mouse
position. An integer argument selects one of the format options in the table below. A string argument is
used as a format for sprintf() in option 6 and should contain two float specifiers. Example:

‘set mouse mouseformat "mouse x,y = %5.2g, %10.3f"¢.

Use set mouse mouseformat "" to turn this string off again.

The following formats are available:

0 default (same as 1)

1 axis coordinates 1.23, 2.45

2 graph coordinates (from O to 1) /0.00, 1.00/

3 x = timefmt y = axis [(as set by ‘set timefmt‘), 2.45]

4 x = date y = axis [31. 12. 1999, 2.45]

5 x = time y = axis [23:59, 2.45]

6 x = date time y = axis [31. 12. 1999 23:59, 2.45]

7 format from ‘set mouse mouseformat‘, e.g. "mouse x,y = 1.23, 2.450"
Scrolling

X and Y axis scaling in both 2D and 3D graphs can be adjusted using the mouse wheel. <wheel-up>
scrolls up (increases both YMIN and YMAX by ten percent of the Y range, and increases both Y2MIN and
Y2MAX likewise), and <wheel down> scrolls down. <shift-wheel-up> scrolls left (decreases both XMIN
and XMAX, and both X2MIN and X2MAX), and <shift-wheel-down> scrolls right. <control-wheel-up>
zooms in toward the center of the plot, and <control-wheel-down> zooms out. <shift-control-wheel-up>
zooms in along the X and X2 axes only, and <shift-control-wheel-down> zooms out along the X and X2
axes only.

X11 mouse

If multiple X11 plot windows have been opened using the set term x11 <n> terminal option, then only
the current plot window supports the entire range of mouse commands and hotkeys. The other windows
will, however, continue to display mouse coordinates at the lower left.

Zoom

Zooming is usually accomplished by holding down the left mouse button and dragging the mouse to delineate
a zoom region. Some platforms may require using a different mouse button. The original plot can be restored
by typing the 'u’ hotkey in the plot window. The hotkeys 'p’ and 'n’ step back and forth through a history
of zoom operations.

The option zoomcoordinates determines if the coordinates of the zoom box are drawn at the edges while
zooming. This is on by default.

If the option zoomjump is on, the mouse pointer will be automatically offset a small distance after starting
a zoom region with button 3. This can be useful to avoid a tiny (or even empty) zoom region. zoomjump
is off by default.

Multiplot

The command set multiplot places gnuplot in the multiplot mode, in which several plots are placed on
the same page, window, or screen.

Syntax:

128 gnuplot 4.6

set multiplot { layout <rows>,<cols>
{rowsfirst|columnsfirst} {downwards|upwards}
{title <page title>}
{scale <xscale>{,<yscale>}} {offset <xoff>{,<yoff>}}

}

unset multiplot

For some terminals, no plot is displayed until the command unset multiplot is given, which causes the
entire page to be drawn and then returns gnuplot to its normal single-plot mode. For other terminals, each
separate plot command produces an updated display, either by redrawing all previous ones and the newly
added plot, or by just adding the new plot to the existing display.

The area to be used by the next plot is not erased before doing the new plot. The clear command can be
used to do this if wanted, as is typically the case for "inset" plots.

Any labels or arrows that have been defined will be drawn for each plot according to the current size and
origin (unless their coordinates are defined in the screen system). Just about everything else that can be
set is applied to each plot, too. If you want something to appear only once on the page, for instance a
single time stamp, you’ll need to put a set time/unset time pair around one of the plot, splot or replot
commands within the set multiplot/unset multiplot block.

The multiplot title is separate from the individual plot titles, if any. Space is reserved for it at the top of
the page, spanning the full width of the canvas.

The commands set origin and set size must be used to correctly position each plot if no layout is specified
or if fine tuning is desired. See set origin (p.[132)) and set size (p.[144)) for details of their usage.

Example:
set multiplot
set size 0.4,0.4
set origin 0.1,0.
plot sin(x)
set size 0.2,0.2
set origin 0.5,0.5
plot cos(x)
unset multiplot

1

This displays a plot of cos(x) stacked above a plot of sin(x).

set size and set origin refer to the entire plotting area used for each plot. Please also see set term size
(p- . If you want to have the axes themselves line up, you can guarantee that the margins are the same
size with the set margin commands. See set margin (p. for their use. Note that the margin settings
are absolute, in character units, so the appearance of the graph in the remaining space will depend on the
screen size of the display device, e.g., perhaps quite different on a video display and a printer.

With the layout option you can generate simple multiplots without having to give the set size and set
origin commands before each plot: Those are generated automatically, but can be overridden at any time.
With layout the display will be divided by a grid with <rows> rows and <cols> columns. This grid is
filled rows first or columns first depending on whether the corresponding option is given in the multiplot
command. The stack of plots can grow downwards or upwards. Default is rowsfirst and downwards.

Each plot can be scaled by scale and shifted with offset; if the y-values for scale or offset are omitted, the
x-value will be used. unset multiplot will turn off the automatic layout and restore the values of set size
and set origin as they were before set multiplot layout.

Example:
set size 1,1
set origin 0,0
set multiplot layout 3,2 columnsfirst scale 1.1,0.9
[up to 6 plot commands here]
unset multiplot

The above example will produce 6 plots in 2 columns filled top to bottom, left to right. Each plot will have
a horizontal size of 1.1/2 and a vertical size of 0.9/3.

gnuplot 4.6 129

See also

multiplot demo (multiplt.dem)

Mx2tics

Minor tic marks along the x2 (top) axis are controlled by set mx2tics. Please see set mxtics (p. [129)).

Mxtics

Minor tic marks along the x axis are controlled by set mxtics. They can be turned off with unset mxtics.
Similar commands control minor tics along the other axes.

Syntax:

set mxtics {<freq> | default}
unset mxtics
show mxtics

The same syntax applies to mytics, mztics, mx2tics, my2tics and mcbtics.

<freq> is the number of sub-intervals (NOT the number of minor tics) between major tics (the default for
a linear axis is either two or five depending on the major tics, so there are one or four minor tics between
major tics). Selecting default will return the number of minor ticks to its default value.

If the axis is logarithmic, the number of sub-intervals will be set to a reasonable number by default (based
upon the length of a decade). This will be overridden if <freq> is given. However the usual minor tics (2,
3, ..., 8,9 between 1 and 10, for example) are obtained by setting <freq> to 10, even though there are but
nine sub-intervals.

To set minor tics at arbitrary positions, use the ("<label>" <pos> <level>, ..) form of set
{x|x2|y|y2|z}tics with <label> empty and <level> set to 1.

The set m{x|x2|y|y2|z}tics commands work only when there are uniformly spaced major tics. If all major
tics were placed explicitly by set {x|x2|y|y2|z}tics, then minor tic commands are ignored. Implicit major
tics and explicit minor tics can be combined using set {x|x2|y|y2|z}tics and set {x|x2|y|y2|z}tics add.

Examples:

set xtics 0, 5, 10
set xtics add (7.5)
set mxtics 5

Major tics at 0,5,7.5,10, minor tics at 1,2,3,4,6,7,8,9
set logscale y
set ytics format ""
set ytics le-6, 10, 1
set ytics add ("1" 1, ".1" 0.1, ".01" 0.01, "107-3" 0.001, \
"10°-4" 0.0001)
set mytics 10

Major tics with special formatting, minor tics at log positions

By default, minor tics are off for linear axes and on for logarithmic axes. They inherit the settings for
axis|border and {no}mirror specified for the major tics. Please see set xtics (p. [160) for information
about these.

My2tics

Minor tic marks along the y2 (right-hand) axis are controlled by set my2tics. Please see set mxtics

(p- [129).

http://gnuplot.sourceforge.net/demo/multiplt.html

130 gnuplot 4.6

Mytics

Minor tic marks along the y axis are controlled by set mytics. Please see set mxtics (p. [129)).

Mztics

Minor tic marks along the z axis are controlled by set mztics. Please see set mxtics (p. [129).

Object

The set object command defines a single object which will appear in all subsequent 2D plots. You may
define as many objects as you like. Currently the supported object types are rectangle, circle, ellipse,
and polygon. Rectangles inherit a default set of style properties (fill, color, border) from those set by
the command set style rectangle, but each object can also be given individual style properties. Circles,
ellipses, and polygons inherit the fill style from set style fill.

Syntax:

set object <index>
<object-type> <object-properties>
{front|back|behind} {fcl|fillcolor <colorspec>} {fs <fillstyle>}
{default} {lw|linewidth <width>}

<object-type> is either rectangle, ellipse, circle, or polygon. Each object type has its own set of
characteristic properties.

Setting front will draw the object in front of all plot elements, but behind any labels that are also marked
front. Setting back will place the object behind all plot curves and labels. Setting behind will place the
object behind everything including the axes and back rectangles, thus

set object rectangle from screen 0,0 to screen 1,1 behind

can be used to provide a colored background for the entire graph or page.

The fill color of the object is taken from the <colorspec>. fillcolor may be abbreviated fc. The fill style
is taken from <fillstyle>. See colorspec (p. and fillstyle (p.[147). If the keyword default is given,
these properties are inherited from the default settings at the time a plot is drawn. See set style rectangle

(p- [L50).

Rectangle

Syntax:

set object <index> rectangle
{from <position> {tolrto} <position> |
center <position> size <w>,<h> |
at <position> size <w>,<h>}

The position of the rectangle may be specified by giving the position of two diagonal corners (bottom left
and top right) or by giving the position of the center followed by the width and the height. In either case
the positions may be given in axis, graph, or screen coordinates. See coordinates (p. [22]). The options at
and center are synonyms.

Examples:

Force the entire area enclosed by the axes to have background color cyan
set object 1 rect from graph 0, graph O to graph 1, graph 1 back
set object 1 rect fc rgb "cyan" fillstyle solid 1.0

Position a red square with lower left at 0,0 and upper right at 2,3
set object 2 rect from 0,0 to 2,3 fc 1t 1

gnuplot 4.6 131

Position an empty rectangle (no fill) with a blue border
set object 3 rect from 0,0 to 2,3 fs empty border rgb "blue"

Return fill and color to the default style but leave vertices unchanged
set object 2 rect default

Ellipse

Syntax:

set object <index> ellipse {atl|center} <position> size <w>,<h>
{angle <orientation>} {units xylxx|yy}
{<other-object-properties>}

The position of the ellipse is specified by giving the center followed by the width and the height (actually
the major and minor axes). The keywords at and center are synonyms. The center position may be given
in axis, graph, or screen coordinates. See coordinates (p. . The major and minor axis lengths must
be given in axis coordinates. The orientation of the ellipse is specified by the angle between the horizontal
axis and the major diameter of the ellipse. If no angle is given, the default ellipse orientation will be used
instead (see set style ellipse (p.) The units keyword controls the scaling of the axes of the ellipse.
units xy means that the major axis is interpreted in terms of units along the x axis, while the minor axis in
that of the y axis. units xx means that both axes of the ellipses are scaled in the units of the x axis, while
units yy means that both axes are in units of the y axis. The default is xy or whatever set style ellipse
units was set to.

NB: If the x and y axis scales are not equal, (e.g. units xy is in effect) then the major/minor axis ratio will
no longer be correct after rotation.

Note that set object ellipse size <2r>,<2r> does not in general produce the same result as set object
circle <r>. The circle radius is always interpreted in terms of units along the x axis, and will always
produce a circle even if the x and y axis scales are different and even if the aspect ratio of your plot is not
1. If units is set to xy, then ’set object ellipse’ interprets the first <2r> in terms of x axis units and the
second <2r> in terms of y axis units. This will only produce a circle if the x and y axis scales are identical
and the plot aspect ratio is 1. On the other hand, if units is set to xx or yy, then the diameters specified
in the ’set object’ command will be interpreted in the same units, so the ellipse will have the correct aspect
ratio, and it will maintain its aspect ratio even if the plot is resized.

Circle

Syntax:

set object <index> circle {at|center} <position> size <radius>
{arc [<begin>:<end>]}
{<other-object-properties>}

The position of the circle is specified by giving the position of the center center followed by the radius. The
keywords at and center are synonyms. The position and radius may be given in x-axis, graph, or canvas
coordinates. See coordinates (p. . In all cases the radius is calculated relative to the horizontal scale
of the axis, graph, or canvas. Any disparity between the horizontal and vertical scaling will be corrected for
so that the result is always a circle.

By default a full circle is drawn. The optional qualifier arc specifies a starting angle and ending angle, in
degrees, for one arc of the circle. The arc is always drawn counterclockwise.

Polygon

Syntax:

set object <index> polygon
from <position> to <position> ... {to <position>}

132 gnuplot 4.6

or

from <position> rto <position> ... {rto <position>}

The position of the polygon may be specified by giving the position of a sequence of vertices. These may be
given in axis, graph, or screen coordinates. If relative coordinates are used (rto) then the coordinate type
must match that of the previous vertex. See coordinates (p. [22).

Example:

set object 1 polygon from 0,0 to 1,1 to 2,0
set object 1 fc rgb "cyan" fillstyle solid 1.0 border 1t -1

Offsets

Offsets provide a mechanism to put an empty boundary around the data inside an autoscaled graph. The
offsets only affect the x1 and y1 axes, and only in 2D plot commands.

Syntax:

set offsets <left>, <right>, <top>, <bottom>
unset offsets
show offsets

Each offset may be a constant or an expression. Each defaults to 0. By default, the left and right offsets
are given in units of the first x axis, the top and bottom offsets in units of the first y axis. Alternatively,
you may specify the offsets as a fraction of the total axis range by using the keyword "graph". A positive
offset expands the axis range in the specified direction, e.g., a positive bottom offset makes ymin more
negative. Negative offsets, while permitted, can have unexpected interactions with autoscaling and clipping.
To prevent the auto-scaling from further adjusting your axis ranges, it is useful to also specify "set auto fix".

Example:

set auto fix
set offsets graph 0.05, 0, 2, 2
plot sin(x)

This graph of sin(x) will have a y range [-3:3] because the function will be autoscaled to [-1:1] and the vertical
offsets are each two. The x range will be [-11:10] because the default is [-10:10] and it has been expanded to
the left by 0.05 of that total range.

Origin

The set origin command is used to specify the origin of a plotting surface (i.e., the graph and its margins)
on the screen. The coordinates are given in the screen coordinate system (see coordinates (p. for
information about this system).

Syntax:

set origin <x-origin>,<y-origin>

Output

By default, screens are displayed to the standard output. The set output command redirects the display
to the specified file or device.

Syntax:

set output {"<filename>"}
show output

The filename must be enclosed in quotes. If the filename is omitted, any output file opened by a previous
invocation of set output will be closed and new output will be sent to STDOUT. (If you give the command

gnuplot 4.6 133

set output "STDOUT", your output may be sent to a file named "STDOUT"! ["May be", not "will be",
because some terminals, like x11 or wxt, ignore set output.])

When both set terminal and set output are used together, it is safest to give set terminal first, because
some terminals set a flag which is needed in some operating systems. This would be the case, for example,
if the operating system needs to know whether or not a file is to be formatted in order to open it properly.

On machines with popen functions (Unix), output can be piped through a shell command if the first non-
whitespace character of the filename is ’|’. For instance,

set output "|lpr -Plaser filename"
set output "|lp -dlaser filename"

On MSDOS machines, set output "PRN" will direct the output to the default printer. On VMS, output
can be sent directly to any spooled device. It is also possible to send the output to DECnet transparent
tasks, which allows some flexibility.

Parametric

The set parametric command changes the meaning of plot (splot) from normal functions to parametric
functions. The command unset parametric restores the plotting style to normal, single-valued expression
plotting.

Syntax:

set parametric
unset parametric
show parametric

For 2D plotting, a parametric function is determined by a pair of parametric functions operating on a
parameter. An example of a 2D parametric function would be plot sin(t),cos(t), which draws a circle (if
the aspect ratio is set correctly — see set size (p.) gnuplot will display an error message if both
functions are not provided for a parametric plot.

For 3D plotting, the surface is described as x=f(u,v), y=g(u,v), z=h(u,v). Therefore a triplet of functions is
required. An example of a 3D parametric function would be cos(u)*cos(v),cos(u)*sin(v),sin(u), which
draws a sphere. gnuplot will display an error message if all three functions are not provided for a parametric
splot.

The total set of possible plots is a superset of the simple f(x) style plots, since the two functions can describe
the x and y values to be computed separately. In fact, plots of the type t,f(t) are equivalent to those produced
with f(x) because the x values are computed using the identity function. Similarly, 3D plots of the type
u,v,f(u,v) are equivalent to f(x,y).

Note that the order the parametric functions are specified is xfunction, yfunction (and zfunction) and that
each operates over the common parametric domain.

Also, the set parametric function implies a new range of values. Whereas the normal f(x) and f(x,y) style
plotting assume an xrange and yrange (and zrange), the parametric mode additionally specifies a trange,
urange, and vrange. These ranges may be set directly with set trange, set urange, and set vrange, or
by specifying the range on the plot or splot commands. Currently the default range for these parametric
variables is [-5:5]. Setting the ranges to something more meaningful is expected.

Plot

The show plot command shows the current plotting command as it results from the last plot and/or splot
and possible subsequent replot commands.

In addition, the show plot add2history command adds this current plot command into the history. It
is useful if you have used replot to add more curves to the current plot and you want to edit the whole
command now.

134 gnuplot 4.6

Pm3d

pm3d is an splot style for drawing palette-mapped 3d and 4d data as color/gray maps and surfaces. It uses
an algorithm that allows plotting gridded as well as non-gridded data without preprocessing, even when the
data scans do not have the same number of points.

Syntax (the options can be given in any order):

set pm3d {
{ at <position> }
{ interpolate <steps/points in scan, between scans> }
{ scansautomatic | scansforward | scansbackward | depthorder }
{ flush { begin | center | end } }
{ ftriangles | noftriangles }
{ cliplin | clip4in }
{ corners2color { mean|geomean|median|min|max|cl|c2|c3lc4 } }
{ hidden3d {<linestyle>} | nohidden3d }
{ implicit | explicit }
{ map }
}
show pm3d
unset pm3d

A pm3d color surface is drawn if the splot command specifies with pm3d, if the data or function style is
set to pm3d globally, or if the pm3d mode is set pm3d implicit. In the latter two cases, the pm3d surface
is draw in addition to the mesh produced by the style specified in the plot command. E.g.

splot ’fred.dat’ with lines, ’lola.dat’ with lines

would draw both a mesh of lines and a pm3d surface for each data set. If the option explicit is on (or
implicit is off) only plots specified by the with pm3d attribute are plotted with a pm3d surface, e.g.:

splot ’fred.dat’ with lines, ’lola.dat’ with pm3d

would plot ’fred.dat’ with lines (only) and ’lola.dat’ with a pm3d surface.

On gnuplot start-up, the mode is explicit. For historical and compatibility reasons, the commands set
pm3d; (i.e. no options) and set pm3d at X ... (i.e. at is the first option) change the mode to implicit.
The command set pm3d; sets other options to their default state.
If you set the default data or function style to pm3d, e.g.:

set style data pm3d

then the options implicit and explicit have no effect.

Note that when plotting several plots, they are plotted in the order given on the command line. This can
be of interest especially for filled surfaces which can overwrite and therefore hide part of earlier plots.

The pm3d coloring can be drawn at any or all of three different positions, top, bottom, or surface. See
pm3d position (p.[135]). The following command draws three color surfaces at different altitudes:

set border 4095
set pm3d at s
splot 10*x with pm3d at b, x*x-y*y, x*x+y*y with pm3d at t

See also help for set palette (p. , set cbrange (p. [L67)), set colorbox (p. , and definitely the
demo file demo/pm3d.dem.

Algorithm

Let us first describe how a map/surface is drawn. The input data come from an evaluated function or from
an splot data file. Each surface consists of a sequence of separate scans (isolines). The pm3d algorithm
fills the region between two neighbouring points in one scan with another two points in the next scan by
a gray (or color) according to z-values (or according to an additional ’color’ column, see help for using

gnuplot 4.6 135

(p-) of these 4 corners; by default the 4 corner values are averaged, but this can be changed by the
option corners2color. In order to get a reasonable surface, the neighbouring scans should not cross and
the number of points in the neighbouring scans should not differ too much; of course, the best plot is with
scans having same number of points. There are no other requirements (e.g. the data need not be gridded).
Another advantage is that the pm3d algorithm does not draw anything outside of the input (measured or
calculated) region.

Surface coloring works with the following input data:

1. splot of function or of data file with one or three data columns: The gray/color scale is obtained by
mapping the averaged (or corners2color) z-coordinate of the four corners of the above-specified quadrangle
into the range [min_color_z,max_color_z] of zrange or cbrange providing a gray value in the range [0:1].
This value can be used directly as the gray for gray maps. The normalized gray value can be further mapped
into a color — see set palette (p. for the complete description.

2. splot of data file with two or four data columns: The gray/color value is obtained by using the last-column
coordinate instead of the z-value, thus allowing the color and the z-coordinate be mutually independent. This
can be used for 4d data drawing.

Other notes:

1. The term ’scan’ referenced above is used more among physicists than the term ’iso_curve’ referenced in
gnuplot documentation and sources. You measure maps recorded one scan after another scan, that’s why.

2. The ’gray’ or ’color’ scale is a linear mapping of a continuous variable onto a smoothly varying palette of
colors. The mapping is shown in a rectangle next to the main plot. This documentation refers to this as a
"colorbox", and refers to the indexing variable as lying on the colorbox axis. See set colorbox (p. [104)),

set cbrange (p. [167)).

3. To use pm3d coloring to generate a two-dimensional plot rather than a 3D surface, use set view map
or set pm3d map.

Position

Color surface can be drawn at the base or top (then it is a gray/color planar map) or at z-coordinates of
surface points (gray/color surface). This is defined by the at option with a string of up to 6 combinations
of b, t and s. For instance, at b plots at bottom only, at st plots firstly surface and then top map, while
at bstbst will never by seriously used.

Colored quadrangles are plotted one after another. When plotting surfaces (at s), the later quadrangles
overlap (overdraw) the previous ones. (Gnuplot is not virtual reality tool to calculate intersections of filled
polygon meshes.) You may try to switch between scansforward and scansbackward to force the first
scan of the data to be plotted first or last. The default is scansautomatic where gnuplot makes a guess
about scans order. On the other hand, the depthorder option completely reorders the quadrangles. The
rendering is performed after a depth sorting, which allows to visualize even complicated surfaces; see pm3d
depthorder (p. for more details.

Scanorder

By default the quadrangles making up a pm3d solid surface are rendered in the order they
are encountered along the surface grid points. This order may be controlled by the options
scansautomatic|scansforward|scansbackward. These scan options are not in general compatible with
hidden-surface removal.

If two successive scans do not have same number of points, then it has to be decided whether to start taking
points for quadrangles from the beginning of both scans (flush begin), from their ends (flush end) or to
center them (flush center). Note, that flush (center|end) are incompatible with scansautomatic: if you
specify flush center or flush end and scansautomatic is set, it is silently switched to scansforward.

If two subsequent scans do not have the same number of points, the option ftriangles specifies whether
color triangles are drawn at the scan tail(s) where there are not enough points in either of the scan. This
can be used to draw a smooth map boundary.

136 gnuplot 4.6

Gnuplot does not do true hidden surface removal for solid surfaces, but often it is sufficient to render the
component quadrangles in order from furthest to closest. This mode may be selected using the options

set pm3d depthorder hidden3d

The depthorder option orders the solid quadrangles; the hidden3d option similarly orders the bounding
lines (if drawn). Note that the global option set hidden3d does not affect pm3d surfaces.

Clipping

Clipping with respect to x, y coordinates of quadrangles can be done in two ways. cliplin: all 4 points
of each quadrangle must be defined and at least 1 point of the quadrangle must lie in the x and y ranges.
clip4in: all 4 points of each quadrangle must lie in the x and y ranges.

Color_assignment

3 columns of data (x,y,z):

The coloring setup as well as the color box drawing are determined by set palette. There can be only one
palette for the current plot. Drawing of several surfaces with different palettes can be achieved by multiplot
with fixed origin and size; don’t forget to use set palette maxcolors when your terminal is running out
of available colors.

There is a single gray/color value associated to each drawn pm3d quadrangle (no smooth color change
among vertices). The value is calculated from z-coordinates from the surrounding corners according to
corners2color <option>. The options 'mean’ (default), ’geomean’ and 'median’ produce various kinds of
surface color smoothing, while options 'min’ and 'max’ choose minimal or maximal value, respectively. This
may not be desired for pixel images or for maps with sharp and intense peaks, in which case the options
‘cl’, '¢2’, '¢3’ or 'c4’ can be used instead to assign the quadrangle color based on the z-coordinate of only
one corner. Some experimentation may be needed to determine which corner corresponds to ’cl’; as the
orientation depends on the drawing direction. Because the pm3d algorithm does not extend the colored
surface outside the range of the input data points, the 'c<j>’ coloring options will result in pixels along two
edges of the grid not contributing to the color of any quadrangle. For example, applying the pm3d algorithm
to the 4x4 grid of data points in script demo/pm3d.dem (please have a look) produces only (4-1)x(4-1)=9
colored rectangles.

4 columns of data (x,y,z,color):

If a fourth column of data is provided, it is normally interpreted as a separate palette-mapped gray value.
The coloring of individual quadrangles works as above, except that the color value is distinct from the z value.
As a separate coloring option, the fourth data column may provide instead an RGB color. See rgbcolor
variable (p. . In this case the plotting command must be

splot ... using 1:2:3:4 with pm3d lc rgb variable

Another drawing algorithm, which would draw quadrangles around a given node by taking corners from
averaged (x,y)-coordinates of its surrounding 4 nodes while using node’s color, could be implemented in the
future. This is already done for drawing images (2D grids) via image and rgbimage styles.

Notice that ranges of z-values and color-values for surfaces are adjustable independently by set zrange, set
cbrange, as well as set log for z or cb. Maps can be adjusted by the cb-axis only; see also set view map

(p- [156)) and set colorbox (p. [104)).

Hidden3d

The option set pm3d hidden3d draws the bounding lines of each quadrangle at the same time that the
quadrangle itself is drawn. Normally it is used in conjunction with the depthorder option to achieve an
approximation to true hidden line removal. This is far more efficient than using the command set hidden3d.
The command takes an optional linestyle controlling the appearance of the bounding lines. If the linestyle
parameter is negative, or omitted, then the line properties given in the plot command are used. Example of
recommended usage:

gnuplot 4.6 137

set pm3d at s hidden3d depthorder

unset hidden3d

unset surf

splot x*x+y*y linecolor rgb "black" linewidth 0.5

Interpolate

The option interpolate m,n will interpolate grid points into a finer mesh, and color each quadrangle
appropriately. For data files, this will smoothen the color surface, and enhance spikes in a color surface.
For functions, interpolation makes little sense, except to trade off precision for memory. It would usually
make more sense to use samples and isosamples when working with functions. For positive m and n,
each quadrangle or triangle is interpolated m-times and n-times in the respective direction. For negative
m and n, the interpolation frequency is chosen so that there will be at least |m| and |n| points drawn; you
can consider this as a special gridding function. Zeros, i.e. interpolate 0,0, will automatically choose an
optimal number of interpolated surface points.

Deprecated_options

There used to be an option {transparent|solid} to this command. Now you get the same effect from set
grid {front|layerdefault}, respectively.

The command set pm3d map is equivalent to set pm3d at b; set view map; set style data pm3d;
set style func pm3d;. It is used for backwards compatibility, when set view map was not available.
Take care that you properly use zrange and cbrange for input data point filtering and color range scaling,
respectively; and also set (no)surface seems to have a (side?) effect.

Palette

Palette is a color storage for use by pm3d, filled color contours or polygons, color histograms, color gradient
background, and whatever it is or it will be implemented... Here it stands for a palette of smooth "continuous"
colors or grays, but let’s call it just a palette.

Color palettes require terminal entries for filled color polygons and palettes of smooth colors, are currently
available for terminals listed in help for set pm3d. The range of color values are adjustable independently
by set cbrange and set log cb. The whole color palette is visualized in the colorbox.

Syntax:

set palette
set palette {
{ gray | color }
{ gamma <gamma> }
{ rgbformulae <r>,<g>,
| defined { (<grayl> <colorl> {, <grayN> <colorN>}...) }
| file ’<filename>’ {datafile-modifiers}
| functions <R>,<G>,

cubehelix {start <val>} {cycles <val>} {saturation <val>} }
model { RGB | HSV | CMY | YIQ | XYZ } }

positive | negative }

nops_allcF | ps_allcF }

maxcolors <maxcolors> }

N N Ty

b
show palette
show palette palette <n> {{float | int}}
show palette gradient
show palette fit2rgbformulae
show palette rgbformulae

138 gnuplot 4.6

show colornames

set palette (i.e. without options) sets up the default values. Otherwise, the options can be given in any
order. show palette shows the current palette properties.

show palette gradient displays the gradient defining the palette (if appropriate). show palette rgb-
formulae prints the available fixed gray —> color transformation formulae. show colornames prints the
known color names.

show palette palette <n> prints to the screen or to the file given by set print a table of RGB triplets
calculated for the current palette settings and a palette having <n> discrete colors. The default wide table
can be limited to 3 columns of r,g,b float values [0..1] or integer values [0..255] by options float or int,
respectively. This way, the current gnuplot color palette can be loaded into other imaging applications, for
example Octave. Additionally to this textual list of RGB table, you can use the test palette command to
plot the R,G,B profiles for the current palette.

The following options determine the coloring properties.

Figure using this palette can be gray or color. For instance, in pm3d color surfaces the gray of each small
spot is obtained by mapping the averaged z-coordinate of the 4 corners of surface quadrangles into the range
[min_z,max_z] providing range of grays [0:1]. This value can be used directly as the gray for gray maps. The
color map requires a transformation gray —> (R,G,B), i.e. a mapping [0:1] —> ([0:1],[0:1],[0:1]).

Basically two different types of mappings can be used: Analytic formulae to convert gray to color, or discrete
mapping tables which are interpolated. palette rgbformulae and palette functions use analytic formulae
whereas palette defined and palette file use interpolated tables. palette rgbformulae reduces the size
of postscript output to a minimum.

The command show palette fit2rgbformulae finds the best matching set palette rgbformulae for the
current set palette. Naturally, it makes sense to use it for non-rgbformulae palettes. This command can
be found useful mainly for external programs using the same rgbformulae definition of palettes as gnuplot,
like zimg (

http://zimg.sourceforge.net

).
set palette gray switches to a gray only palette. set palette rgbformulae, set palette defined, set

palette file and set palette functions switch to a color mapping. set palette color is an easy way to
switch back from the gray palette to the last color mapping.

Automatic gamma correction via set palette gamma <gamma> can be done for gray maps (set palette
gray) and for the cubehelix color palette schemes. Gamma = 1 produces a linear ramp of intensity. See

test palette (p.[172).

Many terminals support only discrete number of colors (e.g. 256 colors in gif). After the default gnuplot
linetype colors are allocated, the rest of the available colors are by default reserved for pm3d. Thus a
multiplot using multiple palettes could fail because the first palette has used all the available color positions.
You can mitigate this limitation by using set palette maxcolors <IN> with a reasonably small value of
N. This option causes N discrete colors to be selected from a continuous palette sampled at equally spaced
intervals. If you want unequal spacing of N discrete colors, use set palette defined instead of a single
continuous palette.

RGB color space might not be the most useful color space to work in. For that reason you may change the
color space with model to one of RGB, HSV, CMY, YIQ and XYZ. Using color names for set palette
defined tables and a color space other than RGB will result in funny colors. All explanation have been
written for RGB color space, so please note, that R can be H, C, Y, or X, depending on the actual color
space (G and B accordingly).

All values for all color spaces are limited to [0,1].

RGB stands for Red, Green and Blue; CMY stands for Cyan, Magenta and Yellow; HSV stands for Hue,
Saturation, and Value; YIQ is the color model used by the U.S. Commercial Color Television Broadcasting,
it is basically an RGB recoding with downward compatibility for black and white television; XYZ are the
three primary colors of the color model defined by the ’Commission Internationale de I’Eclairage’ (CIE). For
more information on color models see:

http://zimg.sourceforge.net

gnuplot 4.6 139

http://en.wikipedia.org/wiki/Color_space

Rgbformulae

For rgbformulae three suitable mapping functions have to be chosen. This is done via rgbformulae
<r>,<g>,. The available mapping functions are listed by show palette rgbformulae. Default
is 7,5,15, some other examples are 3,11,6, 21,23,3 or 3,23,21. Negative numbers, like 3,-11,-6, mean
inverted color (i.e. l-gray passed into the formula, see also positive (p. and negative (p.
options below).

Some nice schemes in RGB color space

7,5,15 ... traditional pm3d (black-blue-red-yellow)

3,11,6 ... green-red-violet

23,28,3 ... ocean (green-blue-white); try also all other permutations
21,22,23 ... hot (black-red-yellow-white)

30,31,32 ... color printable on gray (black-blue-violet-yellow-white)
33,13,10 ... rainbow (blue-green-yellow-red)

34,35,36 ... AFM hot (black-red-yellow-white)

A full color palette in HSV color space

3,2,2 ... red-yellow-green-cyan-blue-magenta-red

Please note that even if called rgbformulae the formulas might actually determine the <H>,<S>,<V> or
<X>,<Y>,<Z> or ... color components as usual.

Use positive and negative to invert the figure colors.

Note that it is possible to find a set of the best matching rgbformulae for any other color scheme by the
command

show palette fit2rgbformulae

Defined

Gray-to-rgb mapping can be manually set by use of palette defined: A color gradient is defined and used
to give the rgh values. Such a gradient is a piecewise linear mapping from gray values in [0,1] to the RGB
space [0,1]x[0,1]x[0,1]. You must specify the gray values and the corresponding RGB values between which
linear interpolation will be done.
Syntax:

set palette defined { (<grayl> <colorl> {, <grayN> <colorN>}...) }

<grayX> are gray values which are mapped to [0,1] and <colorX> are the corresponding rgh colors. The
color can be specified in three different ways:

<color> := { <r> <g> | ’<color-name>’ | ’#rrggbb’ }

Either by three numbers (each in [0,1]) for red, green and blue, separated by whitespace, or the name of the
color in quotes or X style color specifiers also in quotes. You may freely mix the three types in a gradient
definition, but the named color "red" will be something strange if RGB is not selected as color space. Use
show colornames for a list of known color names.

Please note, that even if written as <r>, this might actually be the <H> component in HSV color space or
<X> in CIE-XYZ space, or ... depending on the selected color model.

The <gray> values have to form an ascending sequence of real numbers; the sequence will be automatically
rescaled to [0,1].

set palette defined (without a gradient definition in braces) switches to RGB color space and uses a preset
full-spectrum color gradient. Use show palette gradient to display the gradient.

Examples:

To produce a gray palette (useless but instructive) use:

http://en.wikipedia.org/wiki/Color_space

140 gnuplot 4.6

set palette model RGB
set palette defined (0 "black", 1 "white")

To produce a blue yellow red palette use (all equivalent):
set palette defined (0 "blue", 1 "yellow", 2 "red")
set palette defined (0 001, 1110,2100)
set palette defined (O "#0000ff", 1 "#ffff00", 2 "#ff0000")

To produce some rainbow-like palette use:
set palette defined (O "blue", 3 "green", 6 "yellow", 10 "red")

Full color spectrum within HSV color space:
set palette model HSV
set palette defined (0 O
set palette defined (0 O

11, 1111)
10,1011, 60.833311, 70.833301)
Approximate the default palette used by MATLAB:

set pal defined (1 ’#00008f’, 8 ’#0000ff’, 24 ’#O0O0ffff’, \

40 *#£f£f££00°, 56 ’#£ff0000°, 64 ’#800000°)

To produce a palette with only a few, equally-spaced colors:
set palette model RGB maxcolors 4
set palette defined (0 "yellow", 1 "red")

"Traffic light’ palette (non-smooth color jumps at gray = 1/3 and 2/3).
set palette model RGB
set palette defined (0 "dark-green", 1 "green", \
1 "yellow", 2 "dark-yellow", \
2 "red", 3 "dark-red")

Functions

Use set palette functions <Rexpr>, <Gexpr>, <Bexpr> to define three formulae for the R(gray),
G(gray) and B(gray) mapping. The three formulae may depend on the variable gray which will take values
in [0,1] and should also produce values in [0,1]. Please note that <Rexpr> might be a formula for the H-value
if HSV color space has been chosen (same for all other formulae and color spaces).

Examples:

To produce a full color palette use:
set palette model HSV functions gray, 1, 1

A nice black to gold palette:
set palette model XYZ functions gray**0.35, gray**0.5, gray**0.8

A gamma-corrected black and white palette
gamma = 2.2
color(gray) = gray*x(1l./gamma)
set palette model RGB functions color(gray), color(gray), color(gray)

Cubehelix

The "cubehelix" option defines a family of palettes in which color (hue) varies along the standard color wheel

while at the same time the net intensity increases monotonically as the gray value goes from 0 to 1.
D A Green (2011) http://arxiv.org/abs/1108.5083

start defines the starting point along the color wheel in radians. cycles defines how many color wheel cycles
span the palette range. Larger values of saturation produce more saturated color; saturation > 1 may lead
to clipping of the individual RGB components and to intensity becoming non-monotonic. The palette is also
affected by set palette gamma. The default values are

set palette cubehelix start 0.5 cycles -1.5 saturation 1

set palette gamma 1.5

gnuplot 4.6 141

File

set palette file is basically a set palette defined (<gradient>) where <gradient> is read from a datafile.
Either 4 columns (gray,R,G,B) or just three columns (R,G,B) have to be selected via the using data file
modifier. In the three column case, the line number will be used as gray. The gray range is automatically
rescaled to [0,1]. The file is read as a normal data file, so all datafile modifiers can be used. Please note,
that R might actually be e.g. H if HSV color space is selected.

As usual <filename> may be ’-’ which means that the data follow the command inline and are terminated
by a single e on a line of its own.

Use show palette gradient to display the gradient.
Examples:

Read in a palette of RGB triples each in range [0,255]:
set palette file ’some-palette’ using ($1/255):($2/255):($3/255)

Equidistant rainbow (blue-green-yellow-red) palette:

set palette model RGB file "-"
001

®O -~ O
O -
O O O

Binary palette files are supported as well, see binary general (p. ‘ Example: put 64 triplets of R,G,B
doubles into file palette.bin and load it by

set palette file "palette.bin" binary record=64 using 1:2:3

Gamma correction

For gray mappings gamma correction can be turned on by set palette gamma <gamma>. <gamma>
defaults to 1.5 which is quite suitable for most terminals.

The gamma correction is applied to the cubehelix color palette family, but not to other palette coloring
schemes. However, you may easily implement gamma correction for explicit color functions.

Example:

set palette model RGB
set palette functions gray**0.64, gray*x0.67, gray**0.70

To use gamma correction with interpolated gradients specify intermediate gray values with appropriate
colors. Instead of

set palette defined (0 000, 1 111)

use e.g.

set palette defined (0 0 0 0, 0.5 .73 .73 .73, 1 11 1)

or even more intermediate points until the linear interpolation fits the "gamma corrected" interpolation well
enough.

Postscript

In order to reduce the size of postscript files, the gray value and not all three calculated r,g,b values are
written to the file. Therefore the analytical formulae are coded directly in the postscript language as a
header just before the pm3d drawing, see /g and /cF definitions. Usually, it makes sense to write therein
definitions of only the 3 formulae used. But for multiplot or any other reason you may want to manually edit
the transformations directly in the postscript file. This is the default option nops_allcF. Using the option

142 gnuplot 4.6

ps_allcF writes postscript definitions of all formulae. This you may find interesting if you want to edit the
postscript file in order to have different palettes for different surfaces in one graph. Well, you can achieve
this functionality by multiplot with fixed origin and size.

If pm3d map has been plotted from gridded or almost regular data with an output to a postscript file,
then it is possible to reduce the size of this postscript file up to at about 50% by the enclosed awk script
pm3dCompress.awk. This you may find interesting if you intend to keep the file for including it into your
publication or before downloading a very large file into a slow printer. Usage:

awk -f pm3dCompress.awk thefile.ps >smallerfile.ps

If pm3d map has been plotted from rectangular gridded data with an output to a postscript file, then it is
possible to reduce the file size even more by the enclosed awk script pm3dConvertToIlmage.awk. Usage:

awk -f pm3dConvertTolmage.awk <thefile.ps >smallerfile.ps

You may manually change the postscript output from gray to color and vice versa and change the definition
of <maxcolors>.

Pointintervalbox

The pointinterval property of line types is used in plot style linespoints. A negative value of pointinterval,
e.g. -N, means that point symbols are drawn only for every Nth point, and that a box (actually circle) behind
each point symbol is blanked out by filling with the background color. The command set pointintervalbox
controls the radius of this blanked-out region. It is a multiplier for the default radius, which is equal to the
point size.

Pointsize

The set pointsize command scales the size of the points used in plots.

Syntax:

set pointsize <multiplier>
show pointsize

The default is a multiplier of 1.0. Larger pointsizes may be useful to make points more visible in bitmapped
graphics.
The pointsize of a single plot may be changed on the plot command. See plot with (p. for details.

Please note that the pointsize setting is not supported by all terminal types.

Polar

The set polar command changes the meaning of the plot from rectangular coordinates to polar coordinates.

Syntax:

set polar
unset polar
show polar

In polar coordinates, the dummy variable (t) is an angle. The default range of t is [0:2*pi], or, if degree
units have been selected, to [0:360] (see set angles (p. [95)).

The command unset polar changes the meaning of the plot back to the default rectangular coordinate
system.

The set polar command is not supported for splots. See the set mapping (p. [125)) command for similar
functionality for splot (p. [167))s.

While in polar coordinates the meaning of an expression in t is really r = f(t), where t is an angle of rotation.
The trange controls the domain (the angle) of the function. The r, x and y ranges control the extent of

gnuplot 4.6 143

the graph in the x and y directions. Each of these ranges, as well as the rrange, may be autoscaled or set
explicitly. For details, see set rrange (p.[144)) and set xrange (p. [159)).

Example:
set polar
plot t*sin(t)
set trange [-2+#pi:2+*pi]
set rrange [0:3]
plot t*sin(t)

The first plot uses the default polar angular domain of 0 to 2*pi. The radius and the size of the graph are
scaled automatically. The second plot expands the domain, and restricts the size of the graph to the area
within 3 units of the origin. This has the effect of limiting x and y to [-3:3].

You may want to set size square to have gnuplot try to make the aspect ratio equal to unity, so that
circles look circular. See also

polar demos (polar.dem)
and

polar data plot (poldat.dem).

Print

The set print command redirects the output of the print command to a file.

Syntax:
set print
set print "-"
set print "<filename>"
set print "<filename>" append
set print "|<shell_command>"

Without "<filename>", the output file is restored to <STDERR>. The <filename> "-" means
<STDOUT>. The append flag causes the file to be opened in append mode. A <filename> starting
with "|" is opened as a pipe to the <shell command> on platforms that support piping.

Psdir

The set psdir <directory> command controls the search path used by the postscript terminal to find
prologue.ps and character encoding files. You can use this mechanism to switch between different sets of
locally-customized prolog files. The search order is

1) The directory specified by ‘set psdir‘, if any

2) The directory specified by environmental variable GNUPLOT_PS_DIR

3) A built-in header or one from the default system directory

4) Directories set by ‘set loadpath®

Raxis

The commands set raxis and unset raxis toggle whether the polar axis is drawn separately from grid lines
and the x axis. If the minimum of the current rrange is non-zero (and not autoscaled), then a white circle is
drawn at the center of the polar plot to indicate that the plot lines and axes do not reach 0. The axis line is

drawn using the same line type as the plot border. See polar (p.[142)), rrange (p. [144])), rtics (p. [144)),
set grid (p.[115).

Rmargin

The command set rmargin sets the size of the right margin. Please see set margin (p. [125]) for details.

http://www.gnuplot.info/demo/polar.html
http://www.gnuplot.info/demo/poldat.html

144 gnuplot 4.6

Rrange

The set rrange command sets the range of the radial coordinate for a graph in polar mode. This has the
effect of setting both xrange and yrange as well. The resulting xrange and yrange are both [-(rmax-rmin) :
+(rmax-rmin)]. However if you later change the x or y range, for example by zooming, this does not change
rrange, so data points continue to be clipped against rrange. Autoscaling of rmin always results in rmin =
0.

Rtics

The set rtics command places tics along the polar axis. These will only be shown in polar plot mode. The
tics and labels are drawn to the right of the origin. The mirror keyword causes them to be drawn also to
the left of the origin. See polar (p.[142]), and see set xtics (p. [160)) for discussion of other keywords.

Samples

The sampling rate of functions, or for interpolating data, may be changed by the set samples command.
Syntax:

set samples <samples_1> {,<samp1es_2>}
show samples

By default, sampling is set to 100 points. A higher sampling rate will produce more accurate plots, but will
take longer. This parameter has no effect on data file plotting unless one of the interpolation/approximation
options is used. See plot smooth (p. re 2D data and set cntrparam (p. [102)) and set dgrid3d

(p- [109)) re 3D data.

When a 2D graph is being done, only the value of <samples_1> is relevant.

When a surface plot is being done without the removal of hidden lines, the value of samples specifies the
number of samples that are to be evaluated for the isolines. Each iso-v line will have <sample_1> samples
and each iso-u line will have <sample 2> samples. If you only specify <samples_ 1>, <samples_2> will be
set to the same value as <samples_1>. See also set isosamples (p. .

Size

Syntax:

set size {{no}square | ratio <r> | noratio} {<xscale>,<yscale>}
show size

The <xscale> and <yscale> values are scale factors for the size of the plot, which includes the graph, labels,
and margins.

Important note:

In earlier versions of gnuplot, some terminal types used the values from
‘set size‘ to control also the size of the output canvas; others did not.
In version 4.6 almost all terminals now follow the following convention:

set term <terminal type> size <XX>, <YY> controls the size of the output file, or canvas. Please
see individual terminal documentation for allowed values of the size parameters. By default, the plot will fill
this canvas.

set size <XX>, <YY> scales the plot itself relative to the size of the canvas. Scale values less than 1 will
cause the plot to not fill the entire canvas. Scale values larger than 1 will cause only a portion of the plot
to fit on the canvas. Please be aware that setting scale values larger than 1 may cause problems on some
terminal types.

ratio causes gnuplot to try to create a graph with an aspect ratio of <r> (the ratio of the y-axis length to
the x-axis length) within the portion of the plot specified by <xscale> and <yscale>.

gnuplot 4.6 145

The meaning of a negative value for <r> is different. If <r>=-1, gnuplot tries to set the scales so that the
unit has the same length on both the x and y axes. This is equivalent to set view equal xy. See set view
equal (p. [156]). If <r>=-2, the unit on y has twice the length of the unit on x, and so on.

The success of gnuplot in producing the requested aspect ratio depends on the terminal selected. The graph
area will be the largest rectangle of aspect ratio <r> that will fit into the specified portion of the output
(leaving adequate margins, of course).

square is a synonym for ratio 1.

Both noratio and nosquare return the graph to the default aspect ratio of the terminal, but do not return
<xscale> or <yscale> to their default values (1.0).

ratio and square have no effect on 3D plots, but do affect 3D projections created using set view map.
See also set view equal (p. [156[), which forces the x and y axes of a 3D onto the same scale.

Examples:
To set the size so that the plot fills the available canvas:

set size 1,1

To make the graph half size and square use:

set size square 0.5,0.5

To make the graph twice as high as wide use:

set size ratio 2

Style

Default plotting styles are chosen with the set style data and set style function commands. See plot
with (p. for information about how to override the default plotting style for individual functions and
data sets. See plotting styles (p. for a complete list of styles.

Syntax:

set style function <style>
set style data <style>
show style function

show style data

Default styles for specific plotting elements may also be set.
Syntax:

set style arrow <n> <arrowstyle>

set style fill <fillstyle>

set style histogram <histogram style options>
set style line <n> <linestyle>

If gnuplot was built with the support of objects, then the following options are also available:
Syntax:

set style rectangle <object options> <linestyle> <fillstyle>
set style circle radius <size>
set style ellipse size <size> units {xyl|xx|yy}

Set style arrow

Each terminal has a default set of arrow and point types, which can be seen by using the command test.
set style arrow defines a set of arrow types and widths and point types and sizes so that you can refer to
them later by an index instead of repeating all the information at each invocation.

Syntax:

146 gnuplot 4.6

set style arrow <index> default
set style arrow <index> {nohead | head | heads}
{size <length>,<angle>{,<backangle>}}
{filled | empty | nofilled}
{front | back}
{ {linestyle | 1s <line_style>}
| {linetype | 1t <line_type>}
{linewidth | 1w <line_width} }

unset style arrow
show style arrow

<index> is an integer that identifies the arrowstyle.
If default is given all arrow style parameters are set to their default values.

If the linestyle <index> a